2.3 IBD of more than 2 genes

 2.3.1 Four genes of two people- lbd pattern
ibd label ibd group
state description
individuals ibd genes shared

- \# \# \# \#	1111	1111	B1, B2	4 genes ibd
- \# \# \# \$	1112	1112	B1	3 genes ibd
- \# \# \$ \#	1121			
- \# \$ \#	1211	1211	B2	3 genes ibd
- \# \# \# \$	1222			
- \# \# \$ \$	1122	1122	B1,B2	none
- \# \# \$ @	1123	1123	B1	none
- \# \$ @ @	1233	1233	B2	none
- \# \$ \# \$	1212	1212	neither	2 genes shared
- \# \$ \$ \#	1221			
- \# \$ \# @	1213	1213	neither	1 gene shared
- \# \$ @ \#	1231			
- \# \$ \$ @	1223			
- \# \$ @ \$	1232			
- \# \$ @ \%	1234	1234	neither	none

2.3.2 Any number of genes

- Order the k individuals, and the two genes within each (e.g. paternal then maternal).
- Label the $2 k$ ordered genes sucessively, giving each the label previously assigned to genes to which it is ibd, and otherwise the next available integer.
- For example, in the state 12134415 , the paternal genes of individuals 1,2 , and 4 are ibd and the two genes of individual 3 are ibd.
- Reduce to genotypically equivalent classes of states: 121344 15, 123144 15, $12314451,12134451,122344$ 25, 123244 25, 123244 52 and12 234452 are all equivalent: Individuals 1,2,4 share one gene, and the two genes of individual 3 are ibd.
- Note that when the two genes of the first individual are interchanged, we must relabel the genes 1 and 2, to obtain a legal state label.
- The case of 4 genes of two individuals is shown in the Table 2.3.1: there are 15 states and 9 state classes
- For 12 genes in 6 individuals there are more than 4 million states, but only about 198,000 state classes.

2.3.3 RELATIONSHIPS BETWEEN TWO NON-INBRED RELATIVES

- For two non-inbred relatives, there are 7 states, 3 classes, and 2 probabilities $\mathrm{Ki}=\mathrm{P}(\mathrm{i}$ genes shared ibd), with $\mathrm{K} 2+\mathrm{K} 1+\mathrm{K} 0=1$.
- The following equations relate ψ and $k i, i=0,1,2$:
$\psi=(1 / 2) K 2+(1 / 4) K 1=(1 / 4)(1+K 2-K 0)$
$\psi(\mathrm{B} 1, \mathrm{~B} 2)=(1 / 4)(\psi(\mathrm{M} 1, \mathrm{M} 2)+\psi(\mathrm{M} 1, \mathrm{~F} 2)+$

$$
\psi(\mathrm{F} 1, \mathrm{M} 2)+\psi(\mathrm{F} 1, \mathrm{~F} 2))
$$

- Then
also
$\mathrm{K} 2(\mathrm{~B} 1, \mathrm{~B} 2)=\psi(\mathrm{M} 1, \mathrm{M} 2) \psi(\mathrm{F} 1, \mathrm{~F} 2)+\psi(\mathrm{M} 1, \mathrm{~F} 2) \psi(\mathrm{F} 1, \mathrm{M} 2)$
- $\quad \mathrm{K} 1(\mathrm{~B} 1, \mathrm{~B} 2)=4 \Psi(\mathrm{~B} 1, \mathrm{~B} 2)-2 \mathrm{~K} 2(\mathrm{~B} 1, \mathrm{~B} 2)$,
- And $\mathrm{K} 0(\mathrm{~B} 1, \mathrm{~B} 2)=1-\mathrm{K} 1(\mathrm{~B} 1, \mathrm{~B} 2)-\mathrm{K} 2(\mathrm{~B} 1, \mathrm{~B} 2)$.

Table of K values for relationships

Relationship	K 0	K 1	K 2	Ψ
Unrelated (U)	1.0	0.0	0.0	0.0
Parent-offspring (P)	0.0	1.0	0.0	0.25
Monozygous twin (M)	0.0	0.0	1.0	0.5
Half-sib, uncle, niece, grandparent (H)	0.5	0.5	0.0	0.125
Full sib (S)	0.25	0.5	0.25	0.25
First cousin (C)	0.75	0.25	0.0	0.0625
Double first cousin (D)	0.5625	0.375	0.0625	0.125
Quad half first cousin (Q)	0.5312	0.4375	0.0312	0.125

Representation of relationships in a triangle of unit height

- Any set of three numbers summing to 1 can be represented as a point in a unit-height triangle.
The relationships of the table are shown in the figure.
Applying the Arithmetic Geometric means inequality to these same equations shows $\mathrm{K} 1^{\wedge} 2$ is always at least 4*K0*K2 for all real relationships. The excluded area is show in the figure. (See book, P.38, for details.)

2.3.4 EXAMPLE OF QUADRUPLE HALF FIRST COUSINS

- The example of QHFC shows it is
 possible for all four of $\psi(\mathrm{M} 1, \mathrm{M} 2)$, $\psi($ F1, F 2$), \psi(\mathrm{M} 1, \mathrm{~F} 2)$ and ψ ($\mathrm{F} 1, \mathrm{M} 2$) to be non-zero without the children being inbred.
- Apply equations of 2.3.3 for QHFC.
- $\psi(\mathrm{M} 1, \mathrm{M} 2)=\psi(\mathrm{F} 1, \mathrm{~F} 2)=\psi(\mathrm{M} 1, \mathrm{~F} 2)$ $=\psi(\mathrm{F} 1, \mathrm{M} 2)=1 / 8$. Then
- $K 2=(1 / 8)^{*}(1 / 8)+(1 / 8)^{*}(1 / 8)=1 / 32$ $\psi=(1 / 4)(1 / 8+1 / 8+1 / 8+1 / 8)=1 / 8$, $\mathrm{K} 1=4 \psi-2 \mathrm{~K} 2=7 / 16$, and $K 0=1-K 2-K 1=17 / 32$.
- In the triangle, QHFC are midway between DFC and half-sibs

2.4.2 Examples of 1 and 2 individuals

- DATA ON 1 INDIVIDUAL : Suppose we observe someone who is A1A1

The possible ibd states are $J=(I, N)$, with $P(I)=f, P(N)=1-f$.
So $P(A 1 A 1)=P(A 1 A 1 \mid I) f+P(A 1 A 1 \mid N)(1-f)=q f+q^{\wedge} 2(1-f)=q(f+q-q f)$.

- DATA ON TWO INDIVIDUALS
- The relationship between the two individuals determines the probabilities $\Delta 1, \ldots, \Delta 9$ of the 9 ibd classes (groups of states). Suppose we observe the individuals to be 'AA and $A C$. The left hand side tabulates $P(J)$, for states J and $P(A A, A C \mid J)$:

$\Delta 1$	1111	0	Total probability of observing AA, AC is
$\Delta 2$	1112	$\mathrm{q}(\mathrm{A}) \mathrm{q}(\mathrm{C})$	
$\Delta 3$	1211	0	$P(A A, A C)=\Sigma_{-}\{k=1\}^{\wedge} 9 \Delta k P(A A, A C \mid J=k)$
$\Delta 4$	1122	0	
$\Delta 5$	1123	$q(A)(2 q(A) q(C))$	$=\Delta 2 \mathrm{q}(\mathrm{A}) \mathrm{q}(\mathrm{C})+\Delta 52 \mathrm{q}(\mathrm{A})^{\wedge} 2 \mathrm{q}(\mathrm{C})$
$\Delta 6$	1233	0	
$\Delta 7$	1212	0	$+\Delta 8 \mathrm{q}(\mathrm{A})^{\wedge} 2 \mathrm{q}(\mathrm{C})+\Delta 92 \mathrm{q}(\mathrm{A})^{\wedge} 3 \mathrm{q}(\mathrm{C})$
$\Delta 8$	1213	$q(A) q(A) q(C)$	

2.4.3 DATA ON A NON-INBRED PAIR

- Given relationship R and data $Y=(G 1, G 2)$, the genotypes of the pair of individuals.
- Let $J(i),(i=0,1,2)$ denote the state of ibd in which the two non-inbred individuals share i genes ibd, and $\mathrm{Ki}=\mathrm{Ki}(\mathrm{R})$ the probabilities of state $J(i)$ implied by R.
- $\mathrm{P}(\mathrm{G} 1, \mathrm{G} 2 ; \mathrm{R})=\Sigma$ i $\mathrm{P}(\mathrm{Y} \mid \mathrm{J}(\mathrm{i})) \mathrm{P}(\mathrm{J}(\mathrm{i}) ; \mathrm{R})$
$=K 0(R) P(G 1, G 2\lceil J(0))+K 1(R) P(G 1, G 2 \mid J(1))$
$+\mathrm{K} 2(\mathrm{R}) \mathrm{P}(\mathrm{G} 1, \mathrm{G} 2 \mid \mathrm{J}(2))$
$=K 0 \mathrm{P}(\mathrm{G} 1, \mathrm{G} 2 \mid$ Unrel $)+\mathrm{K} 1 \mathrm{P}(\mathrm{G} 1, \mathrm{G} 2 \mid$ Par-offsp $)$
+ K2 P(G1,G2 | MZ-twins)
$=K 0 \mathrm{P}(\mathrm{G} 1) \mathrm{P}(\mathrm{G} 2)+\mathrm{K} 1 \mathrm{P}(\mathrm{G} 1) \mathrm{P}(\mathrm{kid}=\mathrm{G} 2 \mid$ par=G1)
$+\mathrm{K} 2 \mathrm{P}(\mathrm{G} 1) \mathrm{I}(\mathrm{G} 2=\mathrm{G} 1)$.

2.4.4 Example of use of general formula, using the JV pedigree.

- Label the founder genomes (FGL).

- Any segregation pattern of genes, S, enables us to track the FGL down the pedigree.
- This in turn specifies which genes of which individuals are ibd.
- In this example, males are on left, and females on the right of each marriage.
- In this example, paternal FGL and S are on left, maternal FGL and S are on the right of each individual.

Adding genotype data Y on five individuals

- Here we have the same pattern of segregation S as before, where now we show paths of descent of genes.
- Five individuals are observed as shown with genotypes AC, $C D, B C, C D$ and $C C$ for a locus with (at least) 4 alleles.
- On the next page, we form the FGL-graph. The nodes are FGL present in observed individuals, and lines connect FGL in the same observed individual.

Computing the probability

(b)

- Next we assign allelic types to the FGL.
- An FGL not present can be anything: total probability 1 .
- FGL 1 and 5 can be $1=\mathrm{A}, 5=\mathrm{C}$ or $1=C, 5=A$, total probability $2 q(A) q$ (C).
- A bit of thought shows there is 1 assignment possible for the other component: 8=2=C, 4=D, 10=B with probability $q(B) q(C)^{\wedge} 2 q(D)$.
- Combining we have total probability $2 q(A) q(B) q(C)^{\wedge} 3 q(D)$.
- There will always be 2,1 , or 0 possible assignments.

