
1.3.1 A SAMPLE OF GENES 
•  Consider a single genetic locus, with two codominant 

alleles A and B.   
•  Suppose each independent gene has allelic type A with 

probability q.  We say q is the (population) allele 
frequency of allele A. 

•  For a random sample of n genes from the population, the 
number of A alleles is T ~ Bin(n,q). 

•  That is Pr(T=t) is proportional to  q^t (1-q)^{n-t}.  
•  The obvious estimator of q  is T/n. 
•      This estimator is unbiased since E(T/n) = nq/n = q. 
•      Its variance is q(1-q)/n which in fact is the smallest 

possible variance for any unbiased estimator. 

1.3.2 Likelihood estimation of q 
•  The log-likelihood is  !(q)=   t log (q) + (n-t) log(1-q). 
•  So differentiating the log-likelihood 
•       !’(q)  = (t/q)  - (n-t)/(1-q)  =  n/(q(1-q))( (t/n) – q ) 
•  So the maximum likelihood estimator (MLE) is t/n.   
•  Differentiating again, we find the second derivative: 
•  !’’(q) = - (t/q^2) -   (n-t)/(1-q)^2 and 
•     - E(!’’(q)) = n/q +  n/(1-q) =  n/(q(1-q))  
•  This is the Fisher information, and the (large-sample) 

variance of the MLE is -1/E(!’’(q)).  
•  Here, q(1-q)/n  is the variance for any sample size.   
•  For large n, MLEs are approx unbiased, and have 

approx the smallest possible variance. 

1.3.3 A SAMPLE OF INDIVIDUALS 

•  Suppose we sample n individuals, and that n1 
have genotype AA, n2 have genotype AB and n3 
have genotype BB. n1+n2+n3 =n.  

•  Then we have (2n1 +n2) genes of allelic type A , 
in a sample of 2n genes.  

•   We can estimate q by (2n1 +n2)/2n, but 
properties of the estimator depend on the model 
for genotype frequencies: 

•  The log-likelihood is                                            
n1 log(P(AA)) + n2 log(P(AB)) +  n3 log(P(BB)). 

1.3.4  Four examples  
•  (i)  The two genes in an individual must be of the 

same allelic type (n2=0):  complete dependence.  
The estimator is n1/n and in effect we have a 
sample of n genes. 

•  (ii) Hardy-Weinberg equilibrium (HWE); 
independence of the allelic types of the two 
genes within an individual.  So P(AA) = q^2,  P
(AB)= 2q(1-q) and P(BB) = (1-q)^2. 

•  (iii) A mixture of (i) and (ii):  see 2.2.4. 
•  (iv) A mixture of subpopulations in HWE: see 

1.3.5. 



1.3.5 POPULATION STRUCTURE 

•  Suppose populations i proportions "i , each in HWE, with 
qij the freq of allele Aj in population i. 

•  The overall allele frequencies are weighted average of 
subpopulation allele frequencies. 

•  The overall genotype freqs are weighted average of 
subpopulation HWE frequencies. 

•  We can show that overall there is excess of each 
homozygote relative to overall HWE. This excess is 
known as the Wahlund variance. 

•  We can show that in total there are fewer  heterozygotes 
than under HWE. 

•  Details of equations are on the next page. 

1.4.1 ESTIMATION: case of HWE 

•  Log-likelihood is   !(q)  = log L(q)                                         
= n1 log(q^2) + n2 log(2q(1-q)) + n3log((1-q)^2) 
=  (2 n1 + n2)  log (q)  + (n2 + 2n3) log(1-q) 

•  The MLE of q is (2 n1 + n2)/2n.   
•  If T = 2 n1+n2,   T ~ Bin(2n,q). --- back to 

binomial sampling, with a sample size 2n genes.  
•  Hence, var(T/2n) = q(1-q)/2n. 
•  Note: One generation of random mating 

establishes HWE, since, by definition, the two 
genes in an individual are copies of 
independently sampled parental genes. 

1.4.2 Case of a recessive allele 
•  t = n1 of type AA, and n-t not of type AA. 
•  Assuming HWE, P(AA) = q^2, so  log-likelihood is        
!(q)  =  t  log( q^2) + (n-t) log (1 -q^2) 

•   Differentiating  !’(q) = 2t/q - 2 (n-t) q/(1-q^2)^2                                    
    = (2/q(1-q^2)) (t – n q^2) 

•  So the MLE of q is #(t/n). 
•  Why should this be expected? 
•  Now T ~ Bin(n, q^2), but how can we find the 

variance of this MLE?  



1.4.2 ctd: Using Fisher Information 

•  !’’(q) = - 2t/q^2 - 2(n-t)/(1-q^2)                         .                   
   - 4 (n-t) q^2 / (1-q^2)^2 . 

•   E( - !’’(q))  =  2n +2n + 4 q^2 n/(1-q^2)           .                   
      =  4n/(1-q^2)  

•  Thus, the variance of the MLE of q is approx.   
(1-q^2)/4n. 

•  Note this is larger than q(1-q)/2n. 
•  Note  (i) We have to make assumptions (HWE),.        

(ii) the variance of the estimator is larger.          .        
(iii) Using the Fisher information we can 
measure the information lost. 

1.4.3 Data on relatives 
•  We consider just mother-baby pairs and assume HWE.  
•  See next page for the conditional and joint probabilities. 
•  l(q) = n00 log(q^3) + n01 log(q^2 (1-q)) +                     

n10 log (q^2 (1-q)) +n11 log(q(1-q)) + n12  log (q(1-q)^2)        
+ n21 log (q(1-q)^2)  + n22 log ((1-q)^3)                          
=  (3 n00 + 2 (n01 +n10) + n11 + n12 +  n21 )log q  +    
(3 n22 + 2 (n21+n12) + n11 + n10 +  n01) log (1-q)         
=   mA  log q + mB  log (1-q).  

•  The MLE of q is mA/(mA +mB),                                
where   (mA +mB) = 3n - n11  and                                                 
mA = (3 n00 + 2 (n01 +n10) + n11 + n12 +  n21).  

Parent and child probabilities 
par prob ch AA ch AB ch BB 

AA   q^2    q  (1-q)      0 

AB 2q(1-q)   q/2    1/2 (1-q)/2 

BB (1-q)^2    0           q  (1-q) 

ch AA ch AB ch BB       Data counts 

AA  q^3 q^2(1-q)    0   n00 n01   0 

AB q^2(1-q) q(1-q) q(1-q)^2   n10 n11 n12 

BB     0 q(1-q)^2 (1-q)^3     0 n21 n22 

1.4.4 Alternatives to the MLE 
•  The MLE is ``best'', but there are simpler 

estimators that are not  bad. 
•  One is to use only founders (here the moms):                        

estimate q by (2 nAA + nAB)/2n where nAA and 
nAB are the numbers of AA and AB moms.,  
(nAA = n00+n01). 

•  Or,  use everyone, disregarding relationship:        
estimate q by (2 mAA + mAB)/4n, where mAA 
and mAB are is total numbers of AA and AB 
individuals.      (mAA = 2 n00 + n01 + n10). 

•  These are both unbiased estimators, but 
asymptotically the MLE has smaller variance. 


