Lecture 23: Mar 2, Conditional pmf, pdf, cdf Ross 6.4, 6.5

23.1 Review from Lecture 12

(i) For any two discrete random variables X and W, we considered the conditional probability mass function
pxw(zlw) = P(X =z|[W =w) = pxw(x,w)/pw(w), for w such that py (w) > 0.

(ii) We considered the case X ~ Po(p) andY ~ Po(v), and X,Y independent, so W = (X+Y) ~ Po(u+v).
Then we considered P(X =z | W =w) = P(X =z,Y =w—2)/P(W =w) = px(x)py(w—2)/P(W = w)
and we showed X | (X +Y) = w is Binomial (w, pu/(pu+ v)).

(iii) We defined the conditional pdf fxw(z|w) = fxw(z,w)/fw(w), for w such that fy (w) > 0. This
definition is motivated by

Plz<X<x+drnw<W<+ow)  fxw(r,w) éz dw
Plw < W <w+ dw) - fw (w) dw

Pe<X<z+dox|w<W<w+ow) =

(iv) We considered the case X ~ G(ai,A), W ~ G(ag,\), X and Y independent,
soW=X+4Y ~ G(ag+az,\). (Actually, then we could only consider integer ay = m,as = n, but now we

can have any aj,az > 0.) Then we considered fxw(z|lw) = fxw(z,w)/fw(w) = fx(x) fy(w—2z)/fw(w)
and we showed X | (X +Y) = w has pdf

fx|x4v)(zlw) = %wl(az/w)ml(l —(z/w))"! on0<z<w and 0 otherwise
23.2 The conditional pmf/pdf is a pdf/pmf.
(i) Recall back in 394 (Ross 3.5) we showed a conditional probability is a probability; obeys all the axioms
and resulting formulae. Now we do the same for the conditional pmf/pdf.
pmf: pxw(zlw) >0, and 3-, cx pxyw (zlw) = X, pxw(z,w)/pw(w) = pw(w)/pw(w) = 1.
pdf: fxw(zlw) >0 and [, fxw(zlw)de = [, fxw(z,w) de/fw(w) = fw(w)/fw(w) = 1.
(ii) Hence there is a conditional cdf (Ross, P.292). By definition, P(X € A |w) = [, fxyw(z|w) dz, so with
A= (~o0,a), Fypwlalw) = P(X < oW =w) = [° frw(elw) do.
(iii) From joint to and from conditional pmf/pmf
For events A,B, P(A|B) P(B) = P(ANB) = P(B|A) P(A).
For discrete random variables: px|y (z|y)py (y) = pxy(7,y) = py|x(ylr)px ().
For continuous random variables: fxy(z|y)fy(y) = fxy(2,y) = fyixWlz)fx(x).
23.3 Independence via conditional pmf/pdf
For events A,B, P(ANB) = P(A).P(B); P(B|A) = P(B) and P(A|B) = P(A).
For discrete random variables: px.y (,y) = px(2)py (y); pxiy(zly) = px (x) and py|x (4]2) = py (y).
For continuous random variables: S,y (z,4) = fx (2)fy (v); fxy(ely) = fx (@) and fyix(yle) = fy (9).
If we find fx|y(z|y) does not depend on y, they X and Y are independent.

23.4 Example of the independent Gammas and their sum

r
Ixwy(zlw) = %wl(x/w)ml(l — (z/w)™! on0<xz<w and0 otherwise
Recall for a scale parameter: X = wV; fx(z) = w™ ! fiy(z/w), so here V = X/w given W = w has pdf
fvpwy(zlw) = (T(m+n)/L(m)T(n)v™ (1 —-v)"! on0<wv<1 and 0 otherwise.
But this does not depend on w!! i.e. we have shown V = X/(X +Y) is independent of W = (X +Y).



Lecture 24: Mar 4, Conditional Expectations, and their Expectations Ross 7.5
24.1 Conditional expectation as a random variable
(i) A conditional pdf gives rise to conditional expectations:
oo
EX|Y=y) = [ afoy@l =y dy
T=—00
Similarly for a discrete X with conditional pmf, with sums replacing integrals.
(ii) Conditional expectations satisfy usual properties:
oo
G0 Y =9 = [ gl@) fxplaly =y) dy
x

=—00
00

E(X,Y)|Y=y) = /x 9(z,y) fxyy (@Y =y) dy

=—00

assuming integrals/sums converge absolutely.

(iii) Conditional expectations satisfy usual properties: E(}.; X; | Y =vy) = >, E(X; | Y =vy).

24.2 The expectation of a conditional expectation

The expressions 24.1 depend on the value y; that is they are functions of y. We can consider the corresponding
function of Y. That is E(X|Y) is a random variable; a function of Y. Then

BEXY) = (B =u pwdy = [ ([ fore) de) i) dy
//x fxy(z,y) dy de = /x fx(z) de = E(X).
zJy T
Similarly: E(E(¢(X) | Y)) = E(g(X)).

24.3 Conditional variance

() var(X | Y =y) = E(X —E(X|Y =9))? | Y = y) so we define var(X | Y) = E((X —E(X|Y))? |Y).
(i) var(X | Y) = E(X?|Y) — (E(X|Y))?, by multiplying out the expression in (i).

(Note E(g1(X)ga(Y) | Y) = ga2(V)E(r(X) | ¥).)

(i) E(var(X | ¥)) = BE(X?Y)) — E(E(XY))?) = E(X?) — E(E(X[V))?)

and var(E(X | V) = E((B(X|V))?) — (E(E(X|V))? = B(E(X[Y))?) - (E(X))?

So var(X) = E(X?) — (E(X))? = E(var(X]Y)) + var(E(X|Y)).

—~

24.4 Example (Ross, P.381)

This example combined a pdf and a pmf: X is discrete, but Y continuous.

Suppose the train arrives to pick up passengers at a time Y Uniformly distributed between 8:00am and 7
minutes after 8:00a.m.: E(Y) = 7/2, var(Y) = 72/12 (in minutes after 8:00a.m.).

Now suppose passengers arrive to catch the train as a Poisson process rate \, starting at time 7:45 a.m. (when
the previous train left). So the number arriving by time y is Poisson mean A(15 + y);

EX|Y=y) =var(X | Y =9) = A15+y).

Find the mean and variance of the number of passengers, X, who get on the train:

E(X) = E(E(X]Y)) = EA(156+Y)) = X15 + 7/2).

var(X) = E(var(X]Y)) + var(E(X]Y)) = EAA15+Y)) + var(A(15+Y)) = X156 + 7/2) + A?72/12



Lecture 25: Mar 6, Examples of conditional distributions and expectations

25.1 Ross Ch. 6 # 42 fxy(z,y) = x exp(—z(y+1))on0 <z < o0, 0 <y < o0.

Now fxyv(z,y) = fx(2)fyx(Wlz) so fy|x(ylr) o exp(—wzy) as function of y.

ie fy|x(ylr) = zexp(—zy) on 0 <y <oo: (Y|X =2) ~ E(x): E(Y[|X) = 1/X.

Then also fx(z) = exp(—z)on 0 <z <oo; X ~ &(1).

Note E(XY) = E(E(XY | X)) = E(XE(Y | X)) = E(X x1/X) = 1.

Also (Y | X =x) ~ E(x/x) = &(1) which does not depend on z. i.e. Z = XY ~ &(1) independent of X.

25.2 The bivariate Normal density
Recall this is:

fX,Y(x7y) = (27TUT \V 1- P2>_1 €xp (_2<1 i pQ) ((w ; M)Q

_Qp(af—ﬂa)iy—’/) T (y;u)2>>

So to find fy,(y|x) we just need to extract the terms that depend on y:

fyix(yle) o exp <_2(1 i 22) <(y ; ") - QP(x_/isz_W))

1

ST — 2 + ol /) = ) )

X exp (—
So (Y|X = z) is Normal with mean (v + p(7/0)(z — u)) and variance (1 — p?)72.

25.3 Multinomial: Ross P.290, 373

In fact, conditioned multinomial is multinomial (Ross P.290); that is, if Y1, ..., Yk is Mn(n, (p1, ..., px)) then
given Yy +...+Yx = m, (Y1,...,Yx) is Mn(n—m, (p7, ..., p;)) where pi = p;/(p1 +... +pg), for j =1, ..., k.
Find E(Y; | Y; > 0): E(Y;) = E(Y; | Yi=0)P(Y;=0) + E(Y; | Y; > 0)P(Y; > 0).

Now E(Y;) = npj, and E(Y; | Y; =0) = np;/(1 —p;) (why?). Also1 -P(Y; >0) = P(Y;=0) = (1—p;)™.
Sonp; = (np;/(1—pi)) (1 —pi)" + EY; | Y; =0)(1—(1—pi)")

or B(Y; | ¥i>0) = npj(1— (1 -p)"1)/(1—(1-p)").

25.4 (Almost) Midterm example done a different way!!

The jointly continuous random variables X and Y have joint density function
fxy(z,y) =2on0<z<y<1and fxy(z,y) =0 for all other (z,y).

The marginal pdf fy(y) of Y is fy(y) =2y on 0 <y < 1.

The conditional pdf of X|Y is fxy(z]Y =y)=1/yon 0 <z <y.

i.e. Given Y =y, X is Uniform on (0,y).

(i) So what is E(X|Y) ?

(ii) Show that E(XY) = (1/2)E(Y?) and hence cov(X,Y) = (1/2)var(Y).

(iii) Note by symmetry var(X) = var(1 —Y) = var(Y).

(iv) What is the correlation between X and Y ?



