
Lecture 23: Mar 2, Conditional pmf, pdf, cdf Ross 6.4, 6.5

23.1 Review from Lecture 12

(i) For any two discrete random variables X and W , we considered the conditional probability mass function

pX|W (x|w) = P (X = x|W = w) = pX,W (x, w)/pW (w), for w such that pW (w) > 0.

(ii) We considered the case X ∼ Po(µ) and Y ∼ Po(ν), and X,Y independent, so W = (X+Y ) ∼ Po(µ+ν).

Then we considered P (X = x | W = w) = P (X = x, Y = w−x)/P (W = w) = pX(x)pY (w−x)/P (W = w)

and we showed X | (X + Y ) = w is Binomial (w, µ/(µ + ν)).

(iii) We defined the conditional pdf fX|W (x|w) = fX,W (x, w)/fW (w), for w such that fW (w) > 0. This

definition is motivated by

P (x < X ≤ x + δx | w < W ≤ w + δw) =
P (x < X ≤ x + δx ∩ w < W ≤ +δw)

P (w < W ≤ w + δw)
≈

fX,W (x, w) δx δw

fW (w) δw

(iv) We considered the case X ∼ G(α1, λ), W ∼ G(α2, λ) , X and Y independent,

so W ≡ X + Y ∼ G(α1 + α2, λ). (Actually, then we could only consider integer α1 = m,α2 = n, but now we

can have any α1, α2 > 0.) Then we considered fX|W (x|w) = fX,W (x, w)/fW (w) = fX(x) fY (w−x)/fW (w)

and we showed X | (X + Y ) = w has pdf

fX|(X+Y )(x|w) =
Γ(m + n)

Γ(m)Γ(n)
w−1(x/w)m−1(1 − (x/w))n−1 on 0 ≤ x ≤ w and 0 otherwise

23.2 The conditional pmf/pdf is a pdf/pmf.

(i) Recall back in 394 (Ross 3.5) we showed a conditional probability is a probability; obeys all the axioms

and resulting formulae. Now we do the same for the conditional pmf/pdf.

pmf: pX|W (x|w) ≥ 0, and
∑

x∈X pX|W (x|w) =
∑

x pX,W (x, w)/pW (w) = pW (w)/pW (w) = 1.

pdf: fX|W (x|w) ≥ 0 and
∫

x fX|W (x|w)dx =
∫

x fX,W (x, w) dx/fW (w) = fW (w)/fW (w) = 1.

(ii) Hence there is a conditional cdf (Ross, P.292). By definition, P (X ∈ A | w) =
∫

A fX|W (x|w) dx, so with

A = (−∞, a], FX|W (a|w) = P (X ≤ a|W = w) =
∫ a
−∞ fX|W (x|w) dx.

(iii) From joint to and from conditional pmf/pmf

For events A,B, P (A|B) P (B) = P (A ∩ B) = P (B|A) P (A).

For discrete random variables: pX|Y (x|y)pY (y) = pX,Y (x, y) = pY |X(y|x)pX(x).

For continuous random variables: fX|Y (x|y)fY (y) = fX,Y (x, y) = fY |X(y|x)fX(x).

23.3 Independence via conditional pmf/pdf

For events A,B, P (A ∩ B) = P (A).P (B); P (B|A) = P (B) and P (A|B) = P (A).

For discrete random variables: pX,Y (x, y) = pX(x)pY (y); pX|Y (x|y) = pX(x) and pY |X(y|x) = pY (y).

For continuous random variables: fX,Y (x, y) = fX(x)fY (y); fX|Y (x|y) = fX(x) and fY |X(y|x) = fY (y).

If we find fX|Y (x|y) does not depend on y, they X and Y are independent.

23.4 Example of the independent Gammas and their sum

fX|W )(x|w) =
Γ(m + n)

Γ(m)Γ(n)
w−1(x/w)m−1(1 − (x/w))n−1 on 0 ≤ x ≤ w and 0 otherwise

Recall for a scale parameter: X = wV ; fX(x) = w−1fW (x/w), so here V = X/w given W = w has pdf

fV |W )(x|w) = (Γ(m + n)/Γ(m)Γ(n))vm−1(1 − v)n−1 on 0 ≤ v ≤ 1 and 0 otherwise.

But this does not depend on w!! i.e. we have shown V = X/(X + Y ) is independent of W = (X + Y ).
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Lecture 24: Mar 4, Conditional Expectations, and their Expectations Ross 7.5

24.1 Conditional expectation as a random variable

(i) A conditional pdf gives rise to conditional expectations:

E(X | Y = y) =

∫ ∞

x=−∞
x fX|Y (x|Y = y) dy

Similarly for a discrete X with conditional pmf, with sums replacing integrals.

(ii) Conditional expectations satisfy usual properties:

E(g(X) | Y = y) =

∫ ∞

x=−∞
g(x) fX|Y (x|Y = y) dy

E(g(X, Y ) | Y = y) =

∫ ∞

x=−∞
g(x, y)fX|Y (x|Y = y) dy

assuming integrals/sums converge absolutely.

(iii) Conditional expectations satisfy usual properties: E(
∑

i Xi | Y = y) =
∑

i E(Xi | Y = y).

24.2 The expectation of a conditional expectation

The expressions 24.1 depend on the value y; that is they are functions of y. We can consider the corresponding

function of Y . That is E(X|Y ) is a random variable; a function of Y . Then

E(E(X|Y )) =

∫

y
E(X|Y = y) fY (y) dy =

∫

y

(
∫

x
x fX|Y (x|y) dx

)

fY (y) dy

=

∫

x

∫

y
x fX,Y (x, y) dy dx =

∫

x
x fX(x) dx = E(X).

Similarly: E(E(g(X) | Y )) = E(g(X)).

24.3 Conditional variance

(i) var(X | Y = y) = E((X − E(X|Y = y))2 | Y = y) so we define var(X | Y ) = E((X − E(X|Y ))2 | Y ).

(ii) var(X | Y ) = E(X2 | Y ) − (E(X|Y ))2, by multiplying out the expression in (i).

(Note E(g1(X)g2(Y ) | Y ) = g2(Y )E(g1(X) | Y ).)

(iii) E(var(X | Y )) = E(E(X2|Y )) − E((E(X|Y ))2) = E(X2) − E((E(X|Y ))2)

and var(E(X | Y )) = E((E(X|Y ))2) − (E(E(X|Y )))2 = E((E(X|Y ))2) − (E(X))2

So var(X) = E(X2) − (E(X))2 = E(var(X|Y )) + var(E(X|Y )).

24.4 Example (Ross, P.381)

This example combined a pdf and a pmf: X is discrete, but Y continuous.

Suppose the train arrives to pick up passengers at a time Y Uniformly distributed between 8:00am and τ

minutes after 8:00a.m.: E(Y ) = τ/2, var(Y ) = τ2/12 (in minutes after 8:00a.m.).

Now suppose passengers arrive to catch the train as a Poisson process rate λ, starting at time 7:45 a.m. (when

the previous train left). So the number arriving by time y is Poisson mean λ(15 + y);

E(X | Y = y) = var(X | Y = y) = λ(15 + y).

Find the mean and variance of the number of passengers, X, who get on the train:

E(X) = E(E(X|Y )) = E(λ(15 + Y )) = λ(15 + τ/2).

var(X) = E(var(X|Y )) + var(E(X|Y )) = E(λ(15 + Y )) + var(λ(15 + Y )) = λ(15 + τ/2) + λ2τ2/12
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Lecture 25: Mar 6, Examples of conditional distributions and expectations

25.1 Ross Ch. 6 # 42 fX,Y (x, y) = x exp(−x(y + 1)) on 0 < x < ∞, 0 < y < ∞.

Now fX,Y (x, y) ≡ fX(x)fY |X(y|x) so fY |X(y|x) ∝ exp(−xy) as function of y.

i.e fY |X(y|x) = x exp(−xy) on 0 < y < ∞: (Y |X = x) ∼ E(x): E(Y |X) = 1/X.

Then also fX(x) = exp(−x) on 0 < x < ∞; X ∼ E(1).

Note E(XY ) = E(E(XY | X)) = E(XE(Y | X)) = E(X × 1/X) ≡ 1.

Also (xY | X = x) ∼ E(x/x) ≡ E(1) which does not depend on x. i.e. Z = XY ∼ E(1) independent of X.

25.2 The bivariate Normal density

Recall this is:

fX,Y (x, y) = (2πστ
√

1 − ρ2)−1 exp

(

−
1

2(1 − ρ2)

(

(
x − µ

σ
)2

−2ρ
(x − µ)(y − ν)

στ
+ (

y − ν

τ
)2

))

So to find fY |x(y|x) we just need to extract the terms that depend on y:

fY |X(y|x) ∝ exp

(

−
1

2(1 − ρ2)

(

(
y − ν

τ
)2 − 2ρ

(x − µ)(y − ν)

στ

))

∝ exp

(

−
1

2(1 − ρ2)τ2
(y2 − 2y(ν + ρ(τ/σ)(x − µ)))

)

So (Y |X = x) is Normal with mean (ν + ρ(τ/σ)(x − µ)) and variance (1 − ρ2)τ2.

25.3 Multinomial: Ross P.290, 373

In fact, conditioned multinomial is multinomial (Ross P.290); that is, if Y1, ..., YK is Mn(n, (p1, ..., pK)) then

given Yk+1 + ...+YK = m, (Y1, ..., Yk) is Mn(n−m, (p∗1, ..., p
∗
k)) where p∗j = pj/(p1 + ...+ pk), for j = 1, ..., k.

Find E(Yj | Yi > 0): E(Yj) = E(Yj | Yi = 0)P (Yi = 0) + E(Yj | Yi > 0)P (Yi > 0).

Now E(Yj) = npj , and E(Yj | Yi = 0) = npj/(1− pi) (why?). Also 1−P (Yi > 0) = P (Yi = 0) = (1− pi)
n.

So npj = (npj/(1 − pi))(1 − pi)
n + E(Yj | Yi = 0)(1 − (1 − pi)

n)

or E(Yj | Yi > 0) = npj(1 − (1 − pi)
n−1)/(1 − (1 − pi)

n).

25.4 (Almost) Midterm example done a different way!!

The jointly continuous random variables X and Y have joint density function

fX,Y (x, y) = 2 on 0 ≤ x ≤ y ≤ 1 and fX,Y (x, y) = 0 for all other (x, y).

The marginal pdf fY (y) of Y is fY (y) = 2y on 0 < y < 1.

The conditional pdf of X|Y is fX|Y (x|Y = y) = 1/y on 0 ≤ x ≤ y.

i.e. Given Y = y, X is Uniform on (0, y).

(i) So what is E(X|Y ) ?

(ii) Show that E(XY ) = (1/2)E(Y 2) and hence cov(X, Y ) = (1/2)var(Y ).

(iii) Note by symmetry var(X) = var(1 − Y ) = var(Y ).

(iv) What is the correlation between X and Y ?
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