
Lecture 18: Feb 18, Indicator random variables: Ross 7.2,7.3

18.1: Counting events using indicator random variables: Ross P.340

Let A1, ...., An be events (any subsets of Ω). Let Xi = 1 if Ai occurs, and Xi = 0 otherwise.

Note E(Xi) = P (Ai), and
∏k

i=1 Xi = 1 if and only if X1 = X2 = ... = Xk = 1, i.e. ∩k
1Ai occurs.

Also 1 − ∏k
i=1(1 − Xi) = 1 if and only if some Xi = 1, i = 1, .., k i.e. ∪k

1Ai occurs.

P (A ∪ B ∪ C) = E(1 − (1 − XA)(1 − XB)(1 − XC))

= E(XA + XB + XC − XAXB − XAXC − XBXC + XAXBXC)

= P (A) + P (B) + P (C) − P (A ∩ B) − P (A ∩ C) − P (B ∩ C) + P (A ∩ B ∩ C)

18.2: Expectation of counts of events: Ross P.347-348

Let Ai and Xi be as above, and let Y ≡ ∑n
i=1 Xi be the number of events that occur. Let pi = P (Ai) = E(Xi).

Note var(Xi) = pi(1 − pi).

E(Y ) = E(
n

∑

i=1

Xi) =
n

∑

i=1

E(Xi) =
n

∑

i=1

pi

var(Y ) = var(
n

∑

i=1

Xi) =
n

∑

i=1

var(Xi) + 2
∑ ∑

i<j

cov(Xi, Xj)

=
n

∑

i=1

pi(1 − pi) + 2
∑ ∑

i<j

(P (Ai ∩ Aj) − pipj)

=
n

∑

i=1

pi − (
∑

i

pi)
2 + 2

∑ ∑

i<j

P (Ai ∩ Aj) = E(Y ) − (E(Y ))2 + 2
∑ ∑

i<j

P (Ai ∩ Aj)

18.3: Mean and variance of a hypergeometric random variables: Ross P.350

We have N fish in a pond. m are red and N − m are blue. We sample n fish.

Let Y be the number of red fish in the sample. Let Ai be event that ith fish sampled is red.

Consider the ith fish sampled; every fish has the same probability to be the ithe fish; E(Xi) = P (Ai) = m/N .

So E(Y ) =
∑n

i=1 E(Xi) = nm/N . Now consider jth fish: P (Xj = 1 | Xi = 1) = (m − 1)/(N − 1).

E(XiXj) = m(m − 1)/N(N − 1). So, from 18.2:

var(Y ) = nm/N − (nm/N)2 + 2(
n

2
)m(m − 1)/N(N − 1) =

nm

N

(

1 − nm

N
+

(n − 1)(m − 1)

N − 1

)

= n(m/N)(1 − (m/N) − nm(N − m)/N2(N − 1)

Note this is smaller than the Binomial variance with the same E(Xi) = p = m/N .

18.4: Variances and covariances in a Multinomial distribution: Ross P.364.

Let (Y1, ..., YK) be counts of outcomes type k = 1, 2, ...K, in a multinomial sample size n.

Let Xki = 1 if ith outcome is type k, 0 otherwise. E(Xki) = pk.

Yk =
∑n

i=1 Xki, and outcomes i and j are independent.

So Yk is Binomial (n, pk); E(Yk) = npk, var(Yk) = npk(1 − pk).

However, for outcome i, cannot be both k and k′ so XkiXk′i ≡ 0. So we have

cov(Yk, Yk′) = cov(
n

∑

i−1

Xki,
n

∑

j=1

Xk′j) =
∑

i

∑

j

cov(Xki, Xk′j)

=
∑

i

cov(Xki, Xk′i) =
∑

i

(0 − pkpk′) = − npkpk′ .
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Lecture 19: Feb 20, Examples of expectations, covariances and indicator r.v.

1. Multinomial example

12 students go to give blood. They are from a population in which the frequency of the 4 types A, B, AB

and O are 0.3, 0.2, 0.1 and 0.4, respectively.

(i) What is the expected number of A blood-type students? What is the variance?

(ii) What is the covariance between the number of A-type and AB type students?

(iii) What is the correlation between the number of A-type and not-A-type students?

(iv) What is the variance of the number of students who are not A-type?

Important note: In the multinomial, the blood types of different students are independent. Whether student

i is A is independent of whether student j is AB. The negative cobvariances in the total count of A and AB

students comes about because the same student cannot be both A and AB. (cf. question 3).

2. Ch 7 # 22, and ST #4.

(a) We want to find the expected number of tosses to get all faces of die.

Suppose I have seen 6 − k different faces already, so I have k left to get.

(i) What is the probability I get a new face on the next toss?

(ii) What is the expected number of tosses to the next new face?

(iii) What is the expected total to get all faces? (Answer: 14.7)

(b) We want to find the expected number of 6’s in these tosses.

(i) Let Nk be expected number of k’s; note N1 = N2 = ... = N6.

(ii) So what is the answer to (b)?

3. Dependence in sampling; Let Xi = 1 if ith sampled object specified type k (e.g. red), 0 otherwise.

(a) In a multinomial/binomial model (sampling with replacement), the probability of type k is pk on every

trial. Xi and Xj are independent: E(XiXj) = p2
k. cov(Xi, Xj) = 0.

(b) In a hypergeometric model (sampling without replacement), the probability of a red fish is decreased if

we have already sampled red fish. Show cov(Xi, Xj) = −m(N − m)/N(N − 1).

(c) In a Polya urn model, we can increase the probability of a type k outcome type k with each type k sampled.

We have m red balls, and N − m blue balls in an urn, and an unlimited extra pile of balls. Each time we

select a red ball we replace it, and add an additional red ball. Likewise, if we sample a blue ball, we add an

additional blue ball.

Let Xk = 1 if kth ball drawn is red, and 0 otherwise.

(i) What is E(X1)?

(ii) What is E(X2)?

(iii) What do you conclude about E(Xi) for any i?

(iii) What is E(X1X2), and cov(X1, X2).

(iv) What is the probability of the sequence BBRRRBB?

(v) What is the probability of the sequence RBBRBRB?

(vi) What do you conclude about cov(Xi, Xj) for any i,j?

(vii) How would you find the mean and variance of the number of red balls in n draws?
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Lecture 20: Feb 23: More mgf’s; the bivariate Normal dsn

20.1 The mgf of a Normal random variable: left from Lecture 17

Normal: N(0, 1): note −1

2
x2 + tx = − 1

2
(x − t)2 + 1

2
t2

E(etX) = (1/
√

2π)

∫

∞

−∞

exp(−1

2
x2 + tx) dx = (exp(

1

2
t2)/

√
2π)

∫

∞

−∞

exp(−1

2
(x − t)2) dx = exp(

1

2
t2)

Let Y = aX + b: MY (t) = E(exp((aX + b)t)) = ebtE(exp((at)X)) = ebtMX(at).

Let X ∼ N(µ, σ2), so X = σZ + µ where Z ∼ N(0, 1), so MX(t) = exp(µt + 1

2
σ2t2).

Then Y = aX + b gives

MY (t) = ebt exp(µ(at) + 1

2
σ2(at)2) = exp((aµ + b)t + 1

2
(a2σ2)t2) so Y ∼ N(aµ + b, a2σ2).

Sum of independent Normals (any mean/variance) is Normal; X ∼ N(µ, σ2), Y ∼ N(ν, τ2):

MX+Y (t) = MX(y)MY (t) = exp(µt + 1

2
σ2t2) exp(νt + 1

2
τ2t2) = exp((µ + ν)t + 1

2
(σ2 + τ2)),

so X + Y ∼ N(µ + ν, σ2 + τ2).

Hence any linear combination of independent Normals is also Normal.

20.2 The bivariate Normal via independent standard Normals

Let Z and W be independent N(0, 1), X = µ + aZ + bW , Y = ν + cZ + dW .

Then X and Y are said to be jointly (bivariate) Normal.

Note X ∼ N(µ, σ2) with σ2 = a2 + b2. Note Y ∼ N(ν, τ2) with τ2 = c2 + d2.

Also cov(X, Y ) = E((aZ + bW )(cZ + dW )) = (ac + bd), orρ(X, Y ) = (ac + bd)/στ .

The pdf of (X, Y ) is given by Ross in Ch 6. Pp.294-5 – a nasty mess.

20.3 The mgf of bivariate Normal (X, Y )

Define MX,Y (s, t) = E(exp(sX + tY )). Note MX(s) = MX,Y (s, 0), MY (t) = MX,Y (0, t).

MX,Y (s, t) = E(exp(sµ + asZ + bsW + tν + ctZ + dtW )) = exp(sµ + tν)MZ(as + ct)MW (bs + dt)

= exp(sµ + tν +
1

2
(as + ct)2 +

1

2
(bs + dt)2) = exp(sµ + +tν +

1

2
σ2s2 +

1

2
τ2t2 + (ac + bd)st)

= MX(s) MY (t) exp(ρστst)

20.4 Independence if and only if ρ = 0

Recall in general, ρ(X, Y ) = 0 does not imply X, Y independent.

Recall that the mgf uniquely identifies the pdf; the same is true for our joint mgf MX,Y (s, t) and the joint

pdf fX,Y (x, y).

Now suppose ρ = 0 in our bivariate Normal; i.e. ac + bd = 0.

Then from 20.3: MX,Y (s, t) = MX(s)MY (t), but this is the joint mgf of two independent Normals

X ∼ N(µ, σ2) and Y ∼ N(ν, τ2), so by uniqueness, X and Y are two independent Normals.

That is for Normal random variables, ρ = 0 does imply independence.

The same can be seen from the very messy joint density given by Ross on P.294:

fX,Y (x, y) = (2πστ
√

1 − ρ2)−1 exp

(

− 1

2(1 − ρ2)

(

(
x − µ

σ
)2

−2ρ
(x − µ)(y − ν)

στ
+ (

y − ν

τ
)2

))

on −∞ < x < ∞, −∞ < y < ∞. This factorizes into fX(x).fY (y) if and only if ρ = 0.
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