Lecture 15: Feb 9, Expectations, Variance and Covariance (Ross 7.1, 7.4)

15.1: Expectations of functions and sums

(i) For a discrete random variable, $E(g(X)) = \sum_{x \in \mathcal{X}} g(x) p_X(x)$.

For a continuous random variable, $E(g(X)) = \int_X g(x) f_X(x) dx$.

(This was proved for the discrete case in 394; Ross P.145)

If X and Y have joint pmf $p_{X,Y}(x,y)$ or pdf $f_{X,Y}(x,y)$ then $\mathrm{E}(g(X,Y)) = \sum_x \sum_y g(X,Y) \; p_{X,Y}(x,y)$ or $\mathrm{E}(g(X,Y)) = \int_x \int_y g(X,Y) \; f_{X,Y}(x,y) \; dx \; dy$ respectively. (This would be proved exact same way.)

(ii) Recall also (from 394), $\mathrm{E}(g_1(X)+g_2(X))=\int (g_1(x)+g_2(x))f_X(x)\ dx=\mathrm{E}(g_1(X))+\mathrm{E}(g_2(X)).$ Now, if X and Y have joint pmf $p_{X,Y}(x,y)$ or pdf $f_{X,Y}(x,y)$ then

$$\begin{split} & \mathrm{E}(g_{1}(X) \ + \ g_{2}(Y)) \ = \ \int_{x} \int_{y} (g_{1}(X) \ + \ g_{2}(Y)) \ f_{X,Y}(x,y) \ dx \ dy \\ & = \ \int_{x} g_{1}(X) \left(\int_{y} f_{X,Y}(x,y) dy \right) dx \ + \ \int_{y} g_{2}(Y) \left(\int_{x} f_{X,Y}(x,y) dx \right) dy \\ & = \ \int_{x} g_{1}(X) f_{X}(x) dx \ + \ \int_{y} g_{2}(Y) f_{Y}(y) dy \ = \ \mathrm{E}(g_{1}(X)) \ + \ \mathrm{E}(g_{2}(Y)) \end{split}$$

15.2: Expectation of a product of (functions of) independent rvs

If X and Y are independent random variables

$$E(g_1(X)g_2(Y)) = \int_x \int_y (g_1(X)g_2(Y)) f_{X,Y}(x,y) dx dy = \int_x \int_y (g_1(X)g_2(Y)) f_X(x)f_Y(y) dx dy$$
$$= \left(\int_x g_1(X)f_X(x) dx\right) \left(\int_y g_2(Y)f_Y(y) dy\right) = E(g_1(X))E(g_2(Y))$$

The proof for discrete random variables is similar.

15.3: Variance, Covariance, and correlation

(i) Recall, if $E(X) = \mu$,

$$\operatorname{var}(X) \equiv \operatorname{E}((X - \mu)^2) = \operatorname{E}(X^2 - 2\mu X + \mu^2) = \operatorname{E}(X^2) - 2\mu \operatorname{E}(X) + \mu^2 = \operatorname{E}(X^2) - (\operatorname{E}(X))^2$$

(ii) If $E(X) = \mu$ and $E(Y) = \nu$, define $cov(X, Y) \equiv E((X - \mu)(Y - \nu))$.

Then $cov(X, Y) = E(XY - \mu Y - \nu X + \mu \nu) = E(XY) - \mu E(Y) - \nu E(X) + \mu \nu = E(XY) - E(X)E(Y)$. Note var(X) = cov(X, X), and cov(X, -Y) = -cov(X, Y).

- (iii) We see from **15.2** that if X and Y are independent, then cov(X, Y) = 0.
- (iv) The converse is NOT true: i.e. cov(X,Y) = 0 does **not** imply X,Y independent.

Example: X and Y uniform on a circle/disc: $X = \cos(U)$, $Y = \sin(U)$, where $U \sim U(0, 2\pi)$.

(v) Define the correlation coefficient ρ by

$$\rho(X,Y) = \operatorname{cov}(X,Y)/\sqrt{\operatorname{var}(X)\operatorname{var}(Y)}$$

Note from (iii), if X and Y are independent, $\rho(X,Y) = 0$.

As in (iv), in general, the converse is NOT true.

Also note $\rho(X, X) = +1, \ \rho(X, -X) = -1.$

We shall show below that $-1 \le \rho \le 1$ always.

Lecture 16: Feb 11, Variances and covariances of sums of random variables (Ross 7.4)

16.1: Variance and covariance of a sum

(i) Let X_i have mean μ_i , i = 1, ..., n, and Y_j have mean ν_j , j = 1, ..., m. So $E(\sum_{1}^{n} X_i) = \sum_{1}^{n} \mu_i$ and $E(\sum_{1}^{m} Y_j) = \sum_{1}^{m} \nu_j$.

$$cov\left(\sum_{i=1}^{n} X_{i}, \sum_{j=1}^{m} Y_{j}\right) = E\left(\left(\sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} \mu_{i}\right) \left(\sum_{j=1}^{n} Y_{j} - \sum_{j=1}^{m} \nu_{j}\right)\right) = E\left(\sum_{i=1}^{n} (X_{i} - \mu_{i}) \sum_{j=1}^{m} (Y_{j} - \mu_{j})\right) \\
= E\left(\sum_{i=1}^{n} \sum_{j=1}^{m} (X_{i} - \mu_{i})(Y_{j} - \nu_{j})\right) = \sum_{i=1}^{n} \sum_{j=1}^{m} E((X_{i} - \mu_{i})(Y_{j} - \nu_{j})) = \sum_{i=1}^{n} \sum_{j=1}^{m} cov(X_{i}, Y_{j}).$$
(ii) $var\left(\sum_{i=1}^{n} X_{i}\right) = cov\left(\sum_{i=1}^{n} X_{i}, \sum_{j=1}^{n} X_{j}\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} cov(X_{i}, X_{j}) = \sum_{i=1}^{n} var(X_{i}) + 2 \sum_{i < j} cov(X_{i}, X_{j}).$

(iii) If X_i and X_j are independent for all pairs (X_i, X_j) , then $cov(X_i, X_j) = 0$ so

$$\operatorname{var}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \operatorname{var}(X_{i})$$

16.2: The correlation inequality

Let X have variance σ_X^2 and Y have variance σ_Y^2 .

$$0 \leq \operatorname{var}\left(\frac{X}{\sigma_X} \pm \frac{Y}{\sigma_Y}\right) = \frac{\operatorname{var}(X)}{\sigma_X^2} + \frac{\operatorname{var}(Y)}{\sigma_Y^2} \pm 2\frac{\operatorname{cov}(X,Y)}{\sigma_X\sigma_Y} = 2(1 \pm \rho(X,Y))$$

Hence $0 \le (1 - \rho(X, Y))$ so $\rho \le 1$; $0 \le (1 + \rho(X, Y))$ so $\rho \ge -1$. i.e. $-1 \le \rho \le 1$.

16.3: Mean and variance of a sample mean Let $X_1, ..., X_n$ be independent and identically distributed (i.i.d.) each with mean μ and variance σ^2 . The sample mean is defined as $\overline{X} = n^{-1} \sum_i X_i$. Then

$$E(\overline{X}) = E(n^{-1} \sum_{i=1}^{n} X_i) = n^{-1} \sum_{i=1}^{n} E(X_i) = (n\mu)/n = \mu,$$

$$var(\overline{X}) = var(n^{-1} \sum_{i=1}^{n} X_i) = n^{-2} \sum_{i=1}^{n} var(X_i) = (n\sigma^2)/n^2 = \sigma^2/n$$

We can estimate μ by \overline{X} , and the variance of this estimator is σ^2/n : but now we need to estimate σ^2 .

16.4: Mean of a sample variance Let $X_1, ..., X_n$ be i.i.d. each with mean μ and variance σ^2 .

Note $E(\sum_{i}(X_i - \mu)^2) = n\sigma^2$; but we usually do not know μ .

The sample variance is defined as $S^2 = \sum_i (X_i - \overline{X})^2 / (n-1)$. Then

$$(n-1)S^{2} \equiv \sum_{i=1}^{n} (X_{i} - \overline{X})^{2} = \sum_{i=1}^{n} (X_{i} - \mu + \mu - \overline{X})^{2}$$

$$= \sum_{i=1}^{n} \left((X_{i} - \mu)^{2} - (X_{i} - \mu)(\overline{X} - \mu) + (\overline{X} - \mu)^{2} \right)$$

$$= \sum_{i=1}^{n} (X_{i} - \mu)^{2} - 2(\overline{X} - \mu) \sum_{i=1}^{n} (X_{i} - \mu) + n(\overline{X} - \mu)^{2}$$

$$= \sum_{i=1}^{n} (X_{i} - \mu)^{2} - 2(\overline{X} - \mu)n(\overline{X} - \mu) + n(\overline{X} - \mu)^{2} = \sum_{i=1}^{n} (X_{i} - \mu)^{2} - n(\overline{X} - \mu)^{2}$$

$$E(S^{2}) = (n-1)^{-1} \left(\sum_{i=1}^{n} E((X_{i} - \mu)^{2}) - nE((\overline{X} - \mu)^{2}) \right)$$

$$= (n-1)^{-1} (n \text{var}(X_{i}) - n \text{var}(\overline{X})) = (n-1)^{-1} (n \sigma^{2} - n(\sigma^{2}/n)) = \sigma^{2}$$

Lecture 17: Feb 13: Moment generating functions Ross 7.7

17.1: Definition and basic properties

- (i) Definition: $M_X(t) = \mathrm{E}(e^{tX})$, provided expectation exists. Note $M_X(0) \equiv 1$. Discrete case: $M_X(t) = \sum_x e^{tx} p_X(x)$. Continuous case: $M_X(t) = \int_{x=-\infty}^{\infty} e^{tx} f_X(x) dx$.
- (ii) Moments: Differentiating: $M_X'(t) = E(Xe^{tX})$: $M_X'(0) = E(X)$. $M_X''(t) = E(X^2e^{tX})$, $M_X''(0) = E(X^2)$. In general: $M_X^{(n)}(0) = E(X^n)$.

Although this is basis of name "mgf", it is not often useful in practice: there are easier ways!

(iii) Uniqueness: Mgfs are unique. That is, if $M_X(t) = M_Y(t)$ for all t in an open interval containing 0, then X and Y have the same distribution. **This is useful**, as we will see below.

17.2: Examples of mgf's; Discrete (for convenience, write $z = e^t$).

Binomial:
$$Bin(n,p); q = 1 - p$$
: $E(z^X) = \sum_{k=0}^n {n \choose k} (pz)^k q^{n-k} = (q + pz)^n$

Poisson: $\mathcal{P}o(\mu)$: $\mathrm{E}(z^X) = \sum_{k=0}^{\infty} e^{-\mu} (\mu z)^k / k! = \exp(\mu(z-1))$

Geometric: Geo(p): $E(z^X) = \sum_{k=1}^{\infty} q^{k-1}pz^k = pz/(1-qz)$

Negative binomial: NegB(r, p):

$$E(z^{X}) = \sum_{k=r}^{\infty} {k-1 \choose r-1} q^{k-r} p^{r} z^{k} = (pz)^{r} \sum_{k=0}^{\infty} {k+r-1 \choose k} (qz)^{k} = (pz)^{r} (1-qz)^{-r}$$

17.3: Examples of mgf's: Continuous

Exponential: $\mathcal{E}(\lambda)$: $\mathrm{E}(e^{tX}) = \lambda \int_0^\infty \exp(-(\lambda - t)x) \ dx = \lambda/(\lambda - t)$ provided $t < \lambda$.

Gamma: $G(\alpha, \lambda)$: $\mathrm{E}(e^{tX}) = (\lambda^{\alpha}/\Gamma(\alpha)) \int_0^\infty x^{\alpha-1} \exp(-(\lambda-t)x) \ dx = (\lambda/(\lambda-t))^{\alpha}$

Normal: N(0,1): note $-\frac{1}{2}x^2 + tx = -\frac{1}{2}(x-t)^2 + \frac{1}{2}t^2$

$$E(e^{tX}) = (1/\sqrt{2\pi}) \int_{-\infty}^{\infty} \exp(-\frac{1}{2}x^2 + tx) \ dx = (\exp(\frac{1}{2}t^2)/\sqrt{2\pi}) \int_{-\infty}^{\infty} \exp(-\frac{1}{2}(x-t)^2) \ dx = \exp(\frac{1}{2}t^2)$$

17.4: Mgf of linear functions and sums of independent r.vs

- (i) Let Y = aX + b: $M_Y(t) = \mathbb{E}(\exp((aX + b)t)) = e^{bt}\mathbb{E}(\exp((at)X)) = e^{bt}M_X(at)$.
- (ii) Let $X \sim N(\mu, \sigma^2)$, so $X = \sigma Z + \mu$ where $Z \sim N(0, 1)$, so $M_X(t) = \exp(\mu t + \frac{1}{2}\sigma^2 t^2)$.
- (iii) Let X and Y be independent random variables: W = X + Y:

 $M_W(t) \ = \ \mathrm{E}(\exp((X+Y)t) \ = \ \mathrm{E}(\exp(Xt)\exp(Yt)) \ = \ \mathrm{E}(e^{Xt})\mathrm{E}(e^{Yt}) \ = \ M_X(t)M_Y(t)$

(iv) Let $X_1, ..., X_n$ be i.i.d. with same dsn as X. $W = \sum_{i=1}^n X_i$ $M_W(t) = \prod_{i=1}^n M_{X_i}(t) = (M_X(t))^n$.

17.5 Immediate conclusions!!

Sum of independent Binomials (same p) is Binomial;

Sum of independent Poisson (any means) is Poisson

Sum of independent Geometrics (same p) is Negative Binomial; and of NegBin is also NegBin.

Sum of independent Exponentials (same rate) is Gamma; and of Gamma is also Gamma.

Sum of independent Normals (any mean/variance) is Normal; hence any linear combination also Normal.

3