Lecture 15: Feb 9, Expectations, Variance and Covariance (Ross 7.1, 7.4)
15.1: Expectations of functions and sums
(i) For a discrete random variable, E(g(X)) = > ,cy9(x) px(z).
For a continuous random variable, E(g(X)) = [, g(z) fx(z) dz.
(This was proved for the discrete case in 394; Ross P.145)
If X and Y have joint pmf px y(z,y) or pdf fxy(z,y) then E(g(X,Y)) = >.>, 9(X,Y) pxy(z,y) or
E(¢(X,Y)) = [, fyg(X,Y) fxy(z,y) dx dy respectively. (This would be proved exact same way.)
(ii) Recall also (from 394), E(g1(X) 4+ ¢92(X)) = [(g91(x) 4+ g2(2)) fx () dz = E(g1(X)) + E(g2(X)).
Now, if X and Y have joint pmf px y (z,y) or pdf fxy(z,y) then

B(X) + 000 = [ [0 + 007) xrte) e dy

— /gl (/nyY T ydy) dr + /92 )(fo,y($,y)d$) dy

= [a@)ix@iz + [ @)W = B X) + Ber)

15.2: Expectation of a product of (functions of) independent rvs

If X and Y are independent random variables
Bo()00) = [ [@00) fory) dedy = [ [ @00007) Ix@)() dr dy
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The proof for discrete random variables is similar.
15.3: Variance, Covariance, and correlation
(i) Recall, if E(X) = p,
var(X) = E((X - p)?) = B(X? — 23X + %) = B(X?) - 2uE(X) + 4 = B(X?) — (B(X))?
(ii) If E(X) = p and E(Y') = v, define cov(X,Y) = E(X — p)(Y —v)).
Then cov(X,Y) = E(XY —pY —vX +uv) = E(XY) —pEY) —vEX) 4+ = E(XY) — E(X)E(Y).
Note var(X) = cov(X,X), and cov(X,-Y) = —cov(X,Y).
(iii) We see from 15.2 that if X and Y are independent, then cov(X,Y) = 0.
(iv) The converse is NOT true: i.e. cov(X,Y) = 0 does not imply XY independent.
Example: X and Y uniform on a circle/disc: X = cos(U), Y =sin(U), where U ~ U(0, 27).
(v) Define the correlation coefficient p by

p(X,Y) = cov(X,Y)/\/var(X)var(Y)

Note from (iii), if X and Y are independent, p(X,Y’) = 0.
As in (iv), in general, the converse is NOT true.

Also note p(X,X) = +1, p(X,-X) = —1.

We shall show below that —1 < p <1 always.



Lecture 16: Feb 11, Variances and covariances of sums of random variables (Ross 7.4)
16.1: Variance and covariance of a sum
(i) Let X; have mean p;, ¢ = 1,...,n, and Y; have mean v;, j = 1,...,m. So E(X7X;) = > 7 and
E(X7Y) = X7 ;.
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(iii) If X; and X; are independent for all pairs (X;, X;), then cov(X;, X;) =0 so
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16.2: The correlation inequality ' '

Let X have variance a§< and Y have variance 012/.
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Hence 0 < (1 —p(X,Y))sop<1;0<(1+p(X,Y))sop>—1.1e —1<p<1
16.3: Mean and variance of a sample mean Let Xi,..., X, be independent and identically distributed

(i.i.d.) each with mean y and variance o2. The sample mean is defined as X = n~! 3", X;. Then
BX) = B '3.X) = n ' SE(X) = (wi)fn =
i=1 i=1
var(X) = var(nilin) = n*ZZVar(XZ-) = (ne®)/n? = o*/n

We can estimate p by X, and the variance of this estimator is 02/n: but now we need to estimate o?.

16.4: Mean of a sample variance Let X, ..., X,, be i.i.d. each with mean y and variance o2.

Note E(Y;(X; — p)?) = no?; but we usually do not know .
The sample variance is defined as S? = >~,(X; — X)?/(n — 1). Then
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Lecture 17: Feb 13: Moment generating functions Ross 7.7
17.1: Definition and basic properties
(i) Definition: Mx(t) = E(e*X), provided expectation exists. Note Mx (0) = 1.
Discrete case: Mx(t) = Y., e™px(z). Continuous case: Mx(t) = [° e fx(x)dz.
(i) Moments: Differentiating: M (t) = E(Xe!X): M4 (0) = E(X).
MI(t) = E(X2%X), MZ%(0) = BE(X2). In general: M{V(0) = E(X™).
Although this is basis of name "mgf”, it is not often useful in practice: there are easier ways!
(iii) Uniqueness: Mgfs are unique. That is, if Mx(t) = My (t) for all ¢ in an open interval containing 0, then
X and Y have the same distribution. This is useful, as we will see below.

17.2: Examples of mgf’s; Discrete (for convenience, write z = et).
Binomial: Bin(n,p); ¢=1—p: E(z¥) = ZZ:O( : )(pz)kq"_k = (¢+p2)"

Poisson: Po(u): E(zX) = Y2 e H(uz)k/k! = exp(u(z —1))
Geometric: Geo(p): E(zX) = 02, ¢" 'p2¥ = pz/(1 - q2)
Negative binomial: NegB(r,p):
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17.3: Examples of mgf’s: Continuous
Exponential: £(\): E(e'X) = X [[Cexp(—(A —t)x) dz = A/(X\ —t) provided t < A.
Gamma: G(a, \):

k+7“—1)

. (g2)" = (pz)"(1 —q2)™"

Be™) = (/T(@) [ o Tep(-(A =) dr = (A(A-1)°
Normal: N(0,1): note —1z% +tx = — 3(z —1)? + 3t2
E(e™) = (1/V2n) /o:o exp(—%x2+tx) de = (exp(%tQ)/\/%) /o:o exp(—%(x—tﬁ) dr = exp(=t?)

17.4: Mgf of linear functions and sums of independent r.vs
(i) Let Y = aX +b: My(t) = E(exp((aX +b)t)) = e"E(exp((at)X) = e’ Mx/(at).
(ii) Let X ~ N(u,0?),s0 X = 0Z + p where Z ~ N(0,1), so
Mx (t) = exp(ut + 302t?).
(iii) Let X and Y be independent random variables: W = X + Y
M (t) = E(exp((X +Y)t) = E(exp(Xt)exp(Vt)) = BEXOB(’?) = My (t)My (1)
(iv) Let Xy, ..., Xy, be i.i.d. with same dsnas X. W =371, X,
Mw(t) = Ilita Mx, (1) = (Mx(1))"
17.5 Immediate conclusions!!
Sum of independent Binomials (same p) is Binomial;
Sum of independent Poisson (any means) is Poisson
Sum of independent Geometrics (same p) is Negative Binomial; and of NegBin is also NegBin.
Sum of independent Exponentials (same rate) is Gamma; and of Gamma is also Gamma.

Sum of independent Normals (any mean/variance) is Normal; hence any linear combination also Normal.



