Lecture 10: Jan 28. Independent random variables Ross 6.2

X and Y are independent if for any subsets A and Bof ®, P(X € AN Y e B) = P(X € A) x P((Y € B).
10.1 Independence of two r.vs: discrete case

Discrete case: this is equivalent to pxy(z,y) = P(X =z,Y =y) = P(X =2).P(Y =y) = px(z)py(y).
Clearly this is necessary: take A = {z} and B = {y}.

Conversely, if px v (z,y) = px(z)py(y), then for any A, B:

PXxeA vYeB) = Y Soxv@y = DY px@py(y)
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Note this must hold for all x,y. Thus the ranges of the r.v.s cannot depend on each other. Example: X is
value on first die, Y on second: these are independent. But if we throw out doubles (i.e. points with x = y)
they are no longer independent: if X = 4 we know Y # 4.
10.2 Independence of two r.vs: continuous case
With A = (—o0,z) and B = (—o0,y) we see Fxy(z,y) = Fx(z)Fy(y).
As with the 1-dimensional case, this is also sufficient:

X and Y are independent if and only if Fx y(z,y) = Fx(x)Fy(y) for all z,y.
Differentiating, we see this means fxy(z,y) = fx(z)fy(y), and conversely integrating we see these are
equivalent. Note again it must hold for all x, y: the ranges of the r.vs cannot depend on each other.
10.3 Buffon’s needle: a classic example of estimating .
Parallel lines distance D apart; needle length L, with L < D.
Let X be distance from needle midpoint to nearest line; 6 be angle of needle to X. X is U(0,D/2), 6 is
U(0,7/2) and they are independent. We want the probability
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10.4 Examples of independence and dependence

X and Y are independent if and only if fxy = fx(z)fy(y) for all z,y.
Also, if fxy = g1(x)g2(y) for all XY, then X and Y are independent, and fx(x) o< g1(x), fy(y) < g2(y).
(i) Example: fxy(z,y) =2z +yon0<z<1,0<y<1 (Ch6: # 22)
X and Y are not independent: why not?

(ii) Example: fxy(z,y) =exp(—(z+y)) on 0 <z < o0, 0 <y < oo.

X and Y are independent: why? What is fx(z) ?

(iii) Example: fxy(2,y) = 2exp(—(4z + 1y)) on 0 < 2 < 00, 0 < y < o0.
X and Y are independent: why? What is fx(z) ?

(iv) Example: fxy(z,y)=1/6on0<2z<2,0<y<3,

X and Y are independent: why? What is fx(z) ?

(v) Example: fxy(z,y)=2on0<z,0<y,z+y<1

X and Y are not independent: why not?



Lecture 11: Jan 30. Examples of computing probabilities

11.1 Computing marginal densities

(i) Example: f(z,y) =x+yon0<z<1,0<y<1 (Ch6: # 22)
What is fx(z) ?

(ii) Example: fxy(z,y)=2on0<z,0<y,z+y<1

X and Y are not independent: why not?

What is fx(x) 7

(ii) Example: fxy(z,y) =2exp(—(4z + 3y)) on 0 < z < 00, 0 < y < oc.
X and Y are independent: why? What is fx(z) ?

How would you compute fx(z) if you did not see X and Y are independent?

11.2 Computing probabilities with joint pdf’s
Recall: P((X,Y) € A) = [ [, fxy(z,y) dz dy.

(i) Example: f(z,y) =x+yon0<z<1,0<y<1. (Ch6: #22)
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(ii) Example: f(z,y)=2on0<z,0<y,z+y<1
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11.3: Sum of two independent U(0,1)
Let X ~ U(0,1) and Y ~ U(0,1) with X and Y independent.
So fxy(z,y) = lon0<z<1,0<y<l.
(a) What is the range of W =X 4+Y ?
(b) Compute P(X +Y < w) where 0 < w < 1.
Or, draw a picture. (Answer: w?/2)
(c) Hence show fy(w) = w if 0 < w < 1. (This is only part of fy (w).)
(¢c)Note 2—-W) = (1-X) + (1-Y).
Why does this tell me that fyy(w) is symmetric about w = 17
(d) Because of its shape, fy(w) is known as a triangular density.

Do these densities form a location/scale family ?



Lecture 12: Feb 2: Conditional pmf (discrete) and pdf (continuous): two examples
12.1 Convolution of probability mass functions

Let X and Y be independent discrete r.vs with pmf px () and py ().
PW=(X+Y)=w) ZP =wnNX=zx) = ZP(Y:w—xﬂX:x Zpy w —z)px(x)

Example: sum of independent Poissons; recall the Poisson process number of events.
Let X be Po(u) and Y be Po(v), and X,Y independent.

PX+Y =k = z PY =(k—2)P(X =z) = Z exlzé—_y)xy)’: x exp(x{u)’ux
x=0 =0 !
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(Remember the binomial theorem.)
12.2 Conditional pmf (Ross 6.4): P(X = z|W =w) = pxw(z,w)/pw(w)
Example: Let X be Po(u) and Y be Po(v), and X,Y independent, and W = X+Y. We know W ~ Po(u+v).

PX=z|W=w) = PX=z,Y=w—2x)/PW =w) = px(a)py(w—2z)/P(W =w)
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ie. X | W =w is Binomial (w, p/(p + nu)).
12.3 Convolution of a probability density function (Ross 6.3)
X and Y are independent, with fxy(z,y) = fx(x)fy (y).
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We could use this to show that if X ~ G(m,\),Y ~ G(n,\) then X +Y ~ G(m+n,\) (see Ross P.281),

th

but we know this anyhow from the Poisson process, times to m!” then n* events.

12.4 Conditional probability density function: define fxy(z|y) = fxy(z,y)/fy(y). (Ross 6.5)

Plx<X<z+dznNy<Y <+dy) _ fxy(x,y) oz dy
Ply <Y <y+dy) fr(y) oy

Example: X ~ G(m,\),Y ~ G(n,)\),independent,so W=X+Y ~ G(m+n,A)

Pex<X<z+dzr|y<Y <y+dy =

fxw(elw) = fxw(z,w)/fw(w) = fx(@) fyr(w—)/fw(w)

. gl exp(—Az) A" (w — x)n—l exp(—A(w — z)) I'(m+n)

= I'(m) I'(n) A mEn =T exp(—\w)
= F(m ¥ n) - m— n— .

- Ww Ya/w)™ (1= (z/w))"" on0<a<w and0 otherwise

Note A is gone, but w is a scale parameter. In fact, if V = X/W,
fvw(@lw) = T(m+n)o™ 11 —wv))"1/T(m)(n) on 0 < v < 1, which does not depend on w.



