
Lecture 10: Jan 28. Independent random variables Ross 6.2

X and Y are independent if for any subsets A and B of ℜ, P (X ∈ A ∩ Y ∈ B) = P (X ∈ A)× P ((Y ∈ B).

10.1 Independence of two r.vs: discrete case

Discrete case: this is equivalent to pX,Y (x, y) = P (X = x, Y = y) = P (X = x).P (Y = y) = pX(x)pY (y).

Clearly this is necessary: take A = {x} and B = {y}.

Conversely, if pX,Y (x, y) = pX(x)pY (y), then for any A, B:

P (X ∈ A, Y ∈ B) =
∑

x∈A

∑

y∈B

pX,Y (x, y) =
∑

x∈A

∑

y∈B

pX(x)pY (y)

=
∑

x∈A

pX(x)
∑

y∈B

pY (y) = P (X ∈ A) P (Y ∈ B)

Note this must hold for all x, y. Thus the ranges of the r.v.s cannot depend on each other. Example: X is

value on first die, Y on second: these are independent. But if we throw out doubles (i.e. points with x = y)

they are no longer independent: if X = 4 we know Y 6= 4.

10.2 Independence of two r.vs: continuous case

With A = (−∞, x) and B = (−∞, y) we see FX,Y (x, y) = FX(x)FY (y).

As with the 1-dimensional case, this is also sufficient:

X and Y are independent if and only if FX,Y (x, y) = FX(x)FY (y) for all x, y.

Differentiating, we see this means fX,Y (x, y) = fX(x)fY (y), and conversely integrating we see these are

equivalent. Note again it must hold for all x, y: the ranges of the r.vs cannot depend on each other.

10.3 Buffon’s needle: a classic example of estimating π.

Parallel lines distance D apart; needle length L, with L ≤ D.

Let X be distance from needle midpoint to nearest line; θ be angle of needle to X. X is U(0, D/2), θ is

U(0, π/2) and they are independent. We want the probability

P (X ≤ (L/2) cos(θ)) =

∫ ∫

2x<L cos(y)
fX(x)fθ(y) dx dy =

2

π

2

D

∫ π/2

0

∫ L/2 cos(y)

0
dx dy

=
4

π D

∫ π/2

0

L

2
cos(y) dy =

2 L

π D
[sin(y)]

π/2
0 = 2L/πD

10.4 Examples of independence and dependence

X and Y are independent if and only if fX,Y = fX(x)fY (y) for all x, y.

Also, if fX,Y = g1(x)g2(y) for all X, Y , then X and Y are independent, and fX(x) ∝ g1(x), fY (y) ∝ g2(y).

(i) Example: fX,Y (x, y) = x + y on 0 < x < 1, 0 < y < 1. (Ch 6: # 22)

X and Y are not independent: why not?

(ii) Example: fX,Y (x, y) = exp(−(x + y)) on 0 < x < ∞, 0 < y < ∞.

X and Y are independent: why? What is fX(x) ?

(iii) Example: fX,Y (x, y) = 2 exp(−(4x + 1
2y)) on 0 < x < ∞, 0 < y < ∞.

X and Y are independent: why? What is fX(x) ?

(iv) Example: fX,Y (x, y) = 1/6 on 0 < x < 2, 0 < y < 3,

X and Y are independent: why? What is fX(x) ?

(v) Example: fX,Y (x, y) = 2 on 0 < x, 0 < y, x + y < 1

X and Y are not independent: why not?
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Lecture 11: Jan 30. Examples of computing probabilities

11.1 Computing marginal densities

(i) Example: f(x, y) = x + y on 0 < x < 1, 0 < y < 1. (Ch 6: # 22)

What is fX(x) ?

(ii) Example: fX,Y (x, y) = 2 on 0 < x, 0 < y, x + y < 1

X and Y are not independent: why not?

What is fX(x) ?

(ii) Example: fX,Y (x, y) = 2 exp(−(4x + 1
2y)) on 0 < x < ∞, 0 < y < ∞.

X and Y are independent: why? What is fX(x) ?

How would you compute fX(x) if you did not see X and Y are independent?

11.2 Computing probabilities with joint pdf’s

Recall: P ((X, Y ) ∈ A) =
∫ ∫

A fX,Y (x, y) dx dy.

(i) Example: f(x, y) = x + y on 0 < x < 1, 0 < y < 1. (Ch 6: # 22)

P (X + Y < 1) =

∫ 1

y=0

∫ 1−y

x=0
(x + y) dx dy =

∫ 1

y=0
[
1

2
x2 + yx]1−y

0 dy

=

∫ 1

y=0
(
1

2
(1 − y)2 + y(1 − y))dy =

∫ 1

y=0

1

2
(1 − y2)dy =

1

2
(1 − (1/3)) = 1/3.

(ii) Example: f(x, y) = 2 on 0 < x, 0 < y, x + y < 1

P (X < 3Y ) =

∫ 1

y=0

∫ min(1−y,3y)

x=0
2 dx dy =

∫ 1/4

y=0
6y dy +

∫ 1

y=1/4
2(1 − y) dy

= [3y2]
1/4
0 + [−(1 − y)2]11/4 = 3/16 + 9/16 = 3/4.

11.3: Sum of two independent U(0,1)

Let X ∼ U(0, 1) and Y ∼ U(0, 1) with X and Y independent.

So fX,Y (x, y) = 1 on 0 < x < 1, 0 < y < 1.

(a) What is the range of W = X + Y ?

(b) Compute P (X + Y < w) where 0 < w < 1.

Or, draw a picture. (Answer: w2/2)

(c) Hence show fW (w) = w if 0 < w < 1. (This is only part of fW (w).)

(c) Note (2 − W ) = (1 − X) + (1 − Y ).

Why does this tell me that fW (w) is symmetric about w = 1?

(d) Because of its shape, fW (w) is known as a triangular density.

Do these densities form a location/scale family ?
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Lecture 12: Feb 2: Conditional pmf (discrete) and pdf (continuous): two examples

12.1 Convolution of probability mass functions

Let X and Y be independent discrete r.vs with pmf pX() and pY ().

P (W ≡ (X + Y ) = w) =
∑

x

P (W = w ∩ X = x) =
∑

x

P (Y = w − x ∩ X = x) =
∑

x

pY (w − x)pX(x)

Example: sum of independent Poissons; recall the Poisson process number of events.

Let X be Po(µ) and Y be Po(ν), and X,Y independent.

P (X + Y = k) =
k

∑

x=0

P (Y = (k − x))P (X = x) =
k

∑

x=0

exp(−ν)νk−x

(k − x)!

exp(−µ)µx

x!

=
exp(−(µ + ν))

k!

k
∑

x=0

k!

(k − x)!x!
µx νk−x =

exp(−(µ + ν))

k!
(µ + ν)k

(Remember the binomial theorem.)

12.2 Conditional pmf (Ross 6.4): P (X = x|W = w) = pX,W (x, w)/pW (w)

Example: Let X be Po(µ) and Y be Po(ν), and X,Y independent, and W = X+Y . We know W ∼ Po(µ+ν).

P (X = x | W = w) = P (X = x, Y = w − x)/P (W = w) = pX(x)pY (w − x)/P (W = w)

=
exp(−µ)µx

x!

exp(−ν)νw−x

(w − x)!

w!

exp(−(µ + ν))(µ + ν)w
= (

w

x
)

(

µ

µ + ν

)x (

ν

µ + ν

)w−x

i.e. X | W = w is Binomial (w, µ/(µ + nu)).

12.3 Convolution of a probability density function (Ross 6.3)

X and Y are independent, with fX,Y (x, y) = fX(x)fY (y).

FX+Y (a) =

∫ ∫

x+ylea
fX(x) fY (y) dx dy =

∫ ∞

y=−∞
fY (y)

(
∫ a−y

x=−∞
fX(x) dx

)

dy =

∫ ∞

−∞
FX(a − y) fY (y) dy

fX+Y (a) =
d

da

(
∫ ∞

−∞
FX(a − y) fY (y) dy

)

=

∫ ∞

−∞
fx(a − y) fY (y) dy

We could use this to show that if X ∼ G(m, λ), Y ∼ G(n, λ) then X +Y ∼ G(m+n, λ) (see Ross P.281),

but we know this anyhow from the Poisson process, times to mth then nth events.

12.4 Conditional probability density function: define fX|Y (x|y) = fX,Y (x, y)/fY (y). (Ross 6.5)

P (x < X ≤ x + δx | y < Y ≤ y + δy) =
P (x < X ≤ x + δx ∩ y < Y ≤ +δy)

P (y < Y ≤ y + δy)
≈

fX,Y (x, y) δx δy

fY (y) δy

Example: X ∼ G(m, λ), Y ∼ G(n, λ) , independent, so W ≡ X + Y ∼ G(m + n, λ)

fX|W (x|w) = fX,W (x, w)/fW (w) = fX(x) fY (w − x)/fW (w)

=
λmxm−1 exp(−λx)

Γ(m)

λn(w − x)n−1 exp(−λ(w − x))

Γ(n)

Γ(m + n)

λm+nwm+n−1 exp(−λw)

=
Γ(m + n)

Γ(m)Γ(n)
w−1(x/w)m−1(1 − (x/w))n−1 on 0 ≤ x ≤ w and 0 otherwise

Note λ is gone, but w is a scale parameter. In fact, if V = X/W ,

fV |W (v|w) = Γ(m + n)vm−1(1 − v))n−1/Γ(m)Γ(n) on 0 ≤ v ≤ 1, which does not depend on w.
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