Lecture 7: Jan 21. Linear transformations of continuous random variables
7.1 Location and scale (again)
Let X have pdf fx(z), E(X) = p, var(X) =0? and Y =aX + b, X = (Y —b)/a.
(a) Location: (a=1): Y =X +b, E(Y) = pu+b, var(Y) = o
Fy(y) = P(Y <y) = P(X <y—b)=Fx(y—b). So fy(y) = fx(y—b).
(b) Scale: (b=0, a > 0): Y =aX, E(Y) = ay, var(Y) = a%0?:
Fy(y) = P(Y <y) = P(X <y/a) = Fx(y/a). So fy(y) = (1/a)fx(y/a).
(c) Location and scale: (a > 0): Y =aX + b, E(Y) = au + b, var(Y) = a?0?:
Fy(y) = P(Y<y) = P(X<(y—b)/a) = Fx((y—10b)/a). So fyr(y) = (1/a)fx((y —b)/a).
(d) General case: (any a, b) Y =aX +b, E(Y) = au + b, var(Y) = a0
Suppose a < 0:  Fy(y) = P(Y<y) = P(X>(y—0b)/a) = P(X>(y—"0)/a) = 1— Fx((y—b)/a).
(X is a continuous r.v.) So fy(y) = —(1/a)fx((y—0)/a) = (1/|a|)fx((y —b)/a).

7.2 Normal random variables have location and scale

Recall, X ~ N(u,0?) has pdf fx(z) = (1/v27)(1/0) exp(—(1/2)((z — p)/o)?).

So fx(x) = (1/0)fz((x — u)/o) where fz(z) = (1/v/2r)exp(—(1/2)z?) is pdf of N(0,1).
Recall, X ~ N(u,0?) gives Z = (X — u)/o ~ N(0,1).

Conversely, Z ~ N(0,1) = X =p+0Z ~ N(u,o?).

Nowlet Y = aX+b = a(p+0Z)+b = (au+b)+acZ. SoY ~ N(au+b,a’c?).

7.3 Exponential and Gamma random variables

Note that exponential and Gamma densities have scale A, where X is the rate parameter.
Instead of a density 1/af(y/a) with scale parameter a, we have a density of form \f(\y).
IfY ~ &E(\), then \Y ~ £(1).

If buses come at rate 0.1 per minute, they come at rate 60 x 0.1 = 6 per hour.

My expected waiting time is 10 minutes, or 10/60 = 1/6 hours.
IfY ~ G(o,A), then \Y ~ G(a,l1).

Also note I can add independent Gamma’s of the same scale: T, ~ G(n,)) is waiting time to n’
h

h event in

Poisson process, T,, ~ G(m,\) is waiting time to n'" event in Poisson process.

0 Ty, + T is just time to (m + n)"" event: i.e. G(m +n, \).

7.4 Uniform random variables
Uniform random variables, U(a,b) have both location and scale: linear functions of uniforms are uniform.
Let X be U(0,1): fx(u) = 1for 0 <wu <1 and 0 otherwise. Note E(X) =1/2, var(X) = 1/12.
Or, we could write, fx(u) = H(u)H (1 —u) where H(x) =1, x > 0, and 0 otherwise.
Note Fx(u) =0 for u <0, Fx(u) =u for 0 <u <1, and Fx(u) =1 for u > 1.
Now let Y = ¢+ (k—c)X where c < k: 0< X <1soc<Y <k. Consider ¢c <y < k.
Then Fy(y) = P(Y <y) = Plc+(k—)X <y) = PX <(y—c)/(k—c)) = (y—c)/(k—c).
So fy(y) =1/(k —¢), if ¢ <y < k and 0 otherwise.
Or fy(y) = H((y — )/ (k — ) H(1L — (y — &) (k — 0)/(k — ¢) = (1/o)g((y — ) /o where o = (k — ) is scale,

and c is location, as required.



Lecture 8: Jan 23. Examples with linear transformations
8.1: Normal examples
(a) Let Z ~ N(0,1). What are the mean, variance and pdf of X = yu+ 02?7
(b) Let X ~ N(u,0?). Define a linear function of X that is N(0,1).
(c¢) Let Y = aX +b. What are the mean, variance, and pdf of Y. Define a linear function of Y that is N(0,1).
(d) Define a linear function of Z that is N(2,32).
Define a linear function of X that is N(2,32).
Define a linear function of Y that is N(2,32).

8.2 Exponential and Gamma examples
(a) f X ~EN),show Y = 60X ~E(N/O) (0 >0).
What is E(Y)?
(b) Let Y1 ~ G(3,1/4) and Yo ~ G(5,1/4), and Y7, Y5 independent.
Show Y7 + Y2 is G(8,1/4). (Hint: recall Gamma’s are sum of independent exponentials.)
(c) Let Y1 ~ G(3,1/4) and Yo ~ G(5,1/4). What are E(Y7) and E(Y3) ?
What is the distribution of (1/4)Y1? What is the distribution of 6Y5?
(d) Let Y1 ~ G(3,10) and Yo ~ G(5,4).
What is the distribution of 5Y; + 2Y57

Write the resulting Gamma r.v. as a constant times a Gamma with rate parameter 1.

8.3 Uniform examples Let U be uniform U (4, 8).
a) What are E(U) and var(U) ?

b) What are the distribution, mean, and variance, of 3U — 207

d) Find a linear function of U that is uniform U(0,1).

(
(
(c) What are the distribution, mean, and variance, of 12 — 3U?
(
(e) Find a different linear function of U that is uniform U(0,1).

8.4 Back to Normal examples Let Z ~ N(0,1).

(a) Let U = 2Z + 1; what are E(U), var(U), E(U?)?

(b) Let V = —3Z 4+ 5; what are E(V), var(V), E(V?)?
(¢) Compute E(UV) and compare it with E(U) x E(V).



Lecture 9: Jan 26. Introduction to joint distributions Ross 6.1.

9.1 Joint and marginal (cumulative) distribution functions

For two random variables X and Y the joint cdf is Fxy(a,b) = P(X <a, Y <b), —o0<a,b< 0.
Note that the marginal cdfs of X and of Y are given by

Fx(a) = P(X<a) = PX<a, Y<o0) = P(blim P(X <a,Y <))
= blim P(X <a, Y<b) = blim Fxy(a,b) = Fxy(a,o0)
Fy() = PY <b = alLIrolo Fxy(a,b) = Fxy(o0,b)

Just as in 1 dimension, we can get all other probabilities from F'xy. For example (see picture):
Pla; < X <ag, by <Y <by) = Fxyl(ag, b)) — Fxy(ai,b2) — Fxy(a2,b1) + Fxy(ai,by)

9.2 Joint and marginal probability mass functions
If X and Y are discrete random variables the joint pmf ispxy(z,y) = P(X =z,y=y) forze X, ye ).
Then the marginal pmfs of X and of Y are
px(z) = P(X=2) = > pxy(zy), andpy(y) = > pxy(z,y)
yey rEX
Note px(x) > 0 for x € X, and py (y) > 0 for y € Y, but px y(x,y) can be 0 for some z € X, y € V.
9.3 The multinomial distribution
If we take a sample size n (with replacement) and there are r types, with type i having probability p;,
i=1,..,rand >;_; p; = 1. Let X; be the number of type i in the sample (i = 1,...,7): >/ X; =n:
P(X;=n1, Xo=n9,... X, =n,) = %p?lpg?...pfr
Recall (Ross Ch 1.5), number of ways of arranging nq objects type-1, no objects type-2, ... ni objects type-k,
where ny +ng + .. +np = nis n!/(ny! nol....ng!).
Example: There are 4 ABO blood types, A, B, AB and O. For the USA population, roughly, P(A) = 0.36,
P(B) =0.20, P(AB) = 0.08, and P(O) = 0.36. Twelve students go to donate blood: what is the probability
5 are type A, 2 are type B, one is AB, and 4 are type O7 Answer:
12!
5l x 2l x 1! x 4!

9.4 Joint and marginal probability density functions

(0.36)3(0.2)%(0.08)1(0.36)* = 914760 x 3.25"7 = 0.297.

(i) Random variables X and Y are jointly continuous if there is a function fxy(x,y) defined for all real =
and y, such that for every (?) set C in ®%, P((X,Y) € C) = ff(:t,y)EC fxy(z,y) dv dy.
Then fxy(z,y) is the joint pdf of X and Y.

.. b a
(i) Fxy(a,b) = P(X € (—00,a], Y € (—00,b]) = / / fxy(z,y) de dy
y=—o0 Jr=—00
2
0 fry(ab) = oo Fyy(ah)
(iii) P(Xe€A) = PXeA Ye(-o00x) = /XEA /Oo Ixy(z,y)de dy = /XeA fx(z) dx
y=—00

where fx(z) = /fo fxy(z,y)dy

So fx(x) is pdf of X and similarly pdf of Y is fy(y) = [T, fx,v(z,y)dz



