
Lecture 7: Jan 21. Linear transformations of continuous random variables

7.1 Location and scale (again)

Let X have pdf fX(x), E(X) = µ, var(X) = σ2, and Y = aX + b, X = (Y − b)/a.

(a) Location: (a = 1): Y = X + b, E(Y ) = µ + b, var(Y ) = σ2:

FY (y) = P (Y ≤ y) = P (X ≤ y − b) = FX(y − b). So fY (y) = fX(y − b).

(b) Scale: (b = 0, a > 0): Y = aX, E(Y ) = aµ, var(Y ) = a2σ2:

FY (y) = P (Y ≤ y) = P (X ≤ y/a) = FX(y/a). So fY (y) = (1/a)fX(y/a).

(c) Location and scale: (a > 0): Y = aX + b, E(Y ) = aµ + b, var(Y ) = a2σ2:

FY (y) = P (Y ≤ y) = P (X ≤ (y − b)/a) = FX((y − b)/a). So fY (y) = (1/a)fX((y − b)/a).

(d) General case: (any a, b) Y = aX + b, E(Y ) = aµ + b, var(Y ) = a2σ2:

Suppose a < 0: FY (y) = P (Y ≤ y) = P (X ≥ (y − b)/a) = P (X > (y − b)/a) = 1 − FX((y − b)/a).

(X is a continuous r.v.) So fY (y) = − (1/a)fX((y − b)/a) = (1/|a|)fX((y − b)/a).

7.2 Normal random variables have location and scale

Recall, X ∼ N(µ, σ2) has pdf fX(x) = (1/
√

2π)(1/σ) exp(−(1/2)((x − µ)/σ)2).

So fX(x) = (1/σ)fZ((x − µ)/σ) where fZ(z) = (1/
√

2π) exp(−(1/2)z2) is pdf of N(0, 1).

Recall, X ∼ N(µ, σ2) gives Z = (X − µ)/σ ∼ N(0, 1).

Conversely, Z ∼ N(0, 1) ⇒ X = µ + σZ ∼ N(µ, σ2).

Now let Y = aX + b = a(µ + σZ) + b = (aµ + b) + aσZ. So Y ∼ N(aµ + b, a2σ2).

7.3 Exponential and Gamma random variables

Note that exponential and Gamma densities have scale λ−1, where λ is the rate parameter.

Instead of a density 1/af(y/a) with scale parameter a, we have a density of form λf(λy).

If Y ∼ E(λ), then λY ∼ E(1).

If buses come at rate 0.1 per minute, they come at rate 60 × 0.1 = 6 per hour.

My expected waiting time is 10 minutes, or 10/60 = 1/6 hours.

If Y ∼ G(α, λ), then λY ∼ G(α, 1).

Also note I can add independent Gamma’s of the same scale: Tn ∼ G(n, λ) is waiting time to nth event in

Poisson process, Tm ∼ G(m, λ) is waiting time to nth event in Poisson process.

so Tn + Tm is just time to (m + n)th event: i.e. G(m + n, λ).

7.4 Uniform random variables

Uniform random variables, U(a, b) have both location and scale: linear functions of uniforms are uniform.

Let X be U(0, 1): fX(u) = 1 for 0 ≤ u ≤ 1 and 0 otherwise. Note E(X) = 1/2, var(X) = 1/12.

Or, we could write, fX(u) = H(u)H(1 − u) where H(x) = 1, x ≥ 0, and 0 otherwise.

Note FX(u) = 0 for u ≤ 0, FX(u) = u for 0 ≤ u ≤ 1, and FX(u) = 1 for u ≥ 1.

Now let Y = c + (k − c)X where c < k: 0 ≤ X ≤ 1 so c ≤ Y ≤ k. Consider c ≤ y ≤ k.

Then FY (y) = P (Y ≤ y) = P (c + (k − c)X ≤ y) = P (X ≤ (y − c)/(k − c)) = (y − c)/(k − c).

So fY (y) = 1/(k − c), if c ≤ y ≤ k and 0 otherwise.

Or fY (y) = H((y − c)/(k − c))H(1 − (y − c)/(k − c))/(k − c) = (1/σ)g((y − c)/σ where σ = (k − c) is scale,

and c is location, as required.
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Lecture 8: Jan 23. Examples with linear transformations

8.1: Normal examples

(a) Let Z ∼ N(0, 1). What are the mean, variance and pdf of X = µ + σZ?

(b) Let X ∼ N(µ, σ2). Define a linear function of X that is N(0, 1).

(c) Let Y = aX + b. What are the mean, variance, and pdf of Y . Define a linear function of Y that is N(0, 1).

(d) Define a linear function of Z that is N(2, 32).

Define a linear function of X that is N(2, 32).

Define a linear function of Y that is N(2, 32).

8.2 Exponential and Gamma examples

(a) If X ∼ E(λ), show Y = θX ∼ E(λ/θ) (θ > 0).

What is E(Y )?

(b) Let Y1 ∼ G(3, 1/4) and Y2 ∼ G(5, 1/4), and Y1, Y2 independent.

Show Y1 + Y2 is G(8, 1/4). (Hint: recall Gamma’s are sum of independent exponentials.)

(c) Let Y1 ∼ G(3, 1/4) and Y2 ∼ G(5, 1/4). What are E(Y1) and E(Y2) ?

What is the distribution of (1/4)Y1? What is the distribution of 6Y2?

(d) Let Y1 ∼ G(3, 10) and Y2 ∼ G(5, 4).

What is the distribution of 5Y1 + 2Y2?

Write the resulting Gamma r.v. as a constant times a Gamma with rate parameter 1.

8.3 Uniform examples Let U be uniform U(4, 8).

(a) What are E(U) and var(U) ?

(b) What are the distribution, mean, and variance, of 3U − 20?

(c) What are the distribution, mean, and variance, of 12 − 3U?

(d) Find a linear function of U that is uniform U(0, 1).

(e) Find a different linear function of U that is uniform U(0, 1).

8.4 Back to Normal examples Let Z ∼ N(0, 1).

(a) Let U = 2Z + 1; what are E(U), var(U), E(U 2)?

(b) Let V = −3Z + 5; what are E(V ), var(V ), E(V 2)?

(c) Compute E(UV ) and compare it with E(U) × E(V ).
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Lecture 9: Jan 26. Introduction to joint distributions Ross 6.1.

9.1 Joint and marginal (cumulative) distribution functions

For two random variables X and Y the joint cdf is FX,Y (a, b) = P (X ≤ a, Y ≤ b), −∞ < a, b < ∞.

Note that the marginal cdfs of X and of Y are given by

FX(a) = P (X ≤ a) = P (X ≤ a, Y < ∞) = P ( lim
b→∞

P (X ≤ a, Y ≤ b)

= lim
b→∞

P (X ≤ a, Y ≤ b) = lim
b→∞

FX,Y (a, b) ≡ FX,Y (a,∞)

FY (b) = P (Y ≤ b) = lim
a→∞

FX,Y (a, b) ≡ FX,Y (∞, b)

Just as in 1 dimension, we can get all other probabilities from FX,Y . For example (see picture):

P (a1 < X ≤ a2, b1 < Y ≤ b2) = FX,Y (a2, b2) − FX,Y (a1, b2) − FX,Y (a2, b1) + FX,Y (a1, b1)

9.2 Joint and marginal probability mass functions

If X and Y are discrete random variables the joint pmf is pX,Y (x, y) = P (X = x, y = y) for x ∈ X , y ∈ Y.

Then the marginal pmfs of X and of Y are

pX(x) = P (X = x) =
∑
y∈Y

pX,Y (x, y), and pY (y) =
∑
x∈X

pX,Y (x, y).

Note pX(x) > 0 for x ∈ X , and pY (y) > 0 for y ∈ Y, but pX,Y (x, y) can be 0 for some x ∈ X , y ∈ Y.

9.3 The multinomial distribution

If we take a sample size n (with replacement) and there are r types, with type i having probability pi,

i = 1, ..., r and
∑r

i=1 pi = 1. Let Xi be the number of type i in the sample (i = 1, ..., r):
∑r

i=1 Xi = n:

P (X1 = n1, X2 = n2, ..., Xr = nr) =
n!

n1! n2!....nk!
pn1

1 pn2

2 ....pnr

r

Recall (Ross Ch 1.5), number of ways of arranging n1 objects type-1, n2 objects type-2, ... nk objects type-k,

where n1 + n2 + .. + nk = n is n!/(n1! n2!....nk!).

Example: There are 4 ABO blood types, A, B, AB and O. For the USA population, roughly, P (A) = 0.36,

P (B) = 0.20, P (AB) = 0.08, and P (O) = 0.36. Twelve students go to donate blood: what is the probability

5 are type A, 2 are type B, one is AB, and 4 are type O? Answer:

12!

5! × 2! × 1! × 4!
(0.36)5(0.2)2(0.08)1(0.36)4 = 914760 × 3.25−7 = 0.297.

9.4 Joint and marginal probability density functions

(i) Random variables X and Y are jointly continuous if there is a function fX,Y (x, y) defined for all real x

and y, such that for every (?) set C in <2, P ((X, Y ) ∈ C) =
∫ ∫

(x,y)∈C fX,Y (x, y) dx dy.

Then fX,Y (x, y) is the joint pdf of X and Y .

(ii)
FX,Y (a, b) = P (X ∈ (−∞, a], Y ∈ (−∞, b]) =

∫ b

y=−∞

∫ a

x=−∞

fX,Y (x, y) dx dy

so fX,Y (a, b) =
∂2

∂a ∂b
FX,Y (a, b)

(iii)
P (X ∈ A) = P (X ∈ A, Y ∈ (−∞,∞]) =

∫
X∈A

∫ ∞

y=−∞

fX,Y (x, y) dx dy =

∫
X∈A

fX(x) dx

where fX(x) =

∫ ∞

−∞

fX,Y (x, y)dy

So fX(x) is pdf of X and similarly pdf of Y is fY (y) =
∫ ∞

−∞
fX,Y (x, y)dx
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