Lecture 7: Jan 21. Linear transformations of continuous random variables

7.1 Location and scale (again)

Let X have pdf $f_X(x)$, $E(X) = \mu$, $var(X) = \sigma^2$, and $Y = aX + b$, $X = (Y - b)/a$. (a) Location: $(a = 1)$: $Y = X + b$, $E(Y) = \mu + b$, $var(Y) = \sigma^2$: $F_Y(y) = P(Y \le y) = P(X \le y - b) = F_X(y - b)$. So $f_Y(y) = f_X(y - b)$. (b) Scale: $(b = 0, a > 0)$: $Y = aX$, $E(Y) = a\mu$, $var(Y) = a^2\sigma^2$: $F_Y(y) = P(Y \le y) = P(X \le y/a) = F_X(y/a)$. So $f_Y(y) = (1/a) f_X(y/a)$.

(c) Location and scale: $(a > 0)$: $Y = aX + b$, $E(Y) = a\mu + b$, $var(Y) = a^2\sigma^2$:

$$
F_Y(y) = P(Y \le y) = P(X \le (y - b)/a) = F_X((y - b)/a). \text{ So } f_Y(y) = (1/a)f_X((y - b)/a).
$$

(d) General case: (any a, b) $Y = aX + b$, $E(Y) = a\mu + b$, $var(Y) = a^2\sigma^2$: Suppose $a < 0$: $F_Y(y) = P(Y \le y) = P(X \ge (y - b)/a) = P(X > (y - b)/a) = 1 - F_X((y - b)/a)$. (X is a continuous r.v.) So $f_Y(y) = -(1/a)f_X((y-b)/a) = (1/|a|)f_X((y-b)/a)$.

7.2 Normal random variables have location and scale

Recall, $X \sim N(\mu, \sigma^2)$ has pdf $f_X(x) = (1/\sqrt{2\pi})(1/\sigma) \exp(-(1/2)((x - \mu)/\sigma)^2)$. So $f_X(x) = (1/\sigma) f_Z((x-\mu)/\sigma)$ where $f_Z(z) = (1/\sqrt{2\pi}) \exp(-(1/2)z^2)$ is pdf of $N(0,1)$. Recall, $X \sim N(\mu, \sigma^2)$ gives $Z = (X - \mu)/\sigma \sim N(0, 1)$. Conversely, $Z \sim N(0, 1) \Rightarrow X = \mu + \sigma Z \sim N(\mu, \sigma^2)$. Now let $Y = aX + b = a(\mu + \sigma Z) + b = (a\mu + b) + a\sigma Z$. So $Y \sim N(a\mu + b, a^2\sigma^2)$.

7.3 Exponential and Gamma random variables

Note that exponential and Gamma densities have scale λ^{-1} , where λ is the rate parameter.

Instead of a density $1/a f(y/a)$ with scale parameter a, we have a density of form $\lambda f(\lambda y)$.

If
$$
Y \sim \mathcal{E}(\lambda)
$$
, then $\lambda Y \sim \mathcal{E}(1)$.

If buses come at rate 0.1 per minute, they come at rate $60 \times 0.1 = 6$ per hour.

My expected waiting time is 10 minutes, or $10/60 = 1/6$ hours.

If $Y \sim G(\alpha, \lambda)$, then $\lambda Y \sim G(\alpha, 1)$.

Also note I can add independent Gamma's of the *same scale*: $T_n \sim G(n,\lambda)$ is waiting time to n^{th} event in Poisson process, $T_m \sim G(m, \lambda)$ is waiting time to n^{th} event in Poisson process.

so $T_n + T_m$ is just time to $(m+n)^{th}$ event: i.e. $G(m+n,\lambda)$.

7.4 Uniform random variables

Uniform random variables, $U(a, b)$ have both location and scale: linear functions of uniforms are uniform. Let X be $U(0,1)$: $f_X(u) = 1$ for $0 \le u \le 1$ and 0 otherwise. Note $E(X) = 1/2$, $var(X) = 1/12$.

Or, we could write, $f_X(u) = H(u)H(1-u)$ where $H(x) = 1, x \ge 0$, and 0 otherwise. Note $F_X(u) = 0$ for $u \leq 0$, $F_X(u) = u$ for $0 \leq u \leq 1$, and $F_X(u) = 1$ for $u \geq 1$. Now let $Y = c + (k - c)X$ where $c < k$: $0 \le X \le 1$ so $c \le Y \le k$. Consider $c \le y \le k$. Then $F_Y(y) = P(Y \le y) = P(c + (k - c)X \le y) = P(X \le (y - c)/(k - c)) = (y - c)/(k - c).$ So $f_Y(y) = 1/(k - c)$, if $c \le y \le k$ and 0 otherwise. Or $f_Y(y) = H((y - c)/(k - c))H(1 - (y - c)/(k - c))/(k - c) = (1/\sigma)g((y - c)/\sigma)$ where $\sigma = (k - c)$ is scale, and c is location, as required.

Lecture 8: Jan 23. Examples with linear transformations

8.1: Normal examples

- (a) Let $Z \sim N(0, 1)$. What are the mean, variance and pdf of $X = \mu + \sigma Z$?
- (b) Let $X \sim N(\mu, \sigma^2)$. Define a linear function of X that is $N(0, 1)$.
- (c) Let $Y = aX + b$. What are the mean, variance, and pdf of Y. Define a linear function of Y that is $N(0, 1)$.
- (d) Define a linear function of Z that is $N(2,3^2)$. Define a linear function of X that is $N(2,3^2)$. Define a linear function of Y that is $N(2,3^2)$.

8.2 Exponential and Gamma examples

- (a) If $X \sim \mathcal{E}(\lambda)$, show $Y = \theta X \sim \mathcal{E}(\lambda/\theta)$ ($\theta > 0$). What is $E(Y)$?
- (b) Let $Y_1 \sim G(3, 1/4)$ and $Y_2 \sim G(5, 1/4)$, and Y_1 , Y_2 independent.
- Show $Y_1 + Y_2$ is $G(8, 1/4)$. (Hint: recall Gamma's are sum of independent exponentials.)

(c) Let $Y_1 \sim G(3, 1/4)$ and $Y_2 \sim G(5, 1/4)$. What are $E(Y_1)$ and $E(Y_2)$?

What is the distribution of $(1/4)Y_1$? What is the distribution of $6Y_2$?

(d) Let $Y_1 \sim G(3, 10)$ and $Y_2 \sim G(5, 4)$.

What is the distribution of $5Y_1 + 2Y_2$?

Write the resulting Gamma r.v. as a constant times a Gamma with rate parameter 1.

8.3 Uniform examples Let U be uniform $U(4, 8)$.

- (a) What are $E(U)$ and var (U) ?
- (b) What are the distribution, mean, and variance, of $3U 20$?
- (c) What are the distribution, mean, and variance, of $12 3U$?
- (d) Find a linear function of U that is uniform $U(0, 1)$.
- (e) Find a different linear function of U that is uniform $U(0, 1)$.

8.4 Back to Normal examples Let $Z \sim N(0, 1)$.

- (a) Let $U = 2Z + 1$; what are $E(U)$, $var(U)$, $E(U^2)$?
- (b) Let $V = -3Z + 5$; what are $E(V)$, $var(V)$, $E(V^2)$?
- (c) Compute $E(UV)$ and compare it with $E(U) \times E(V)$.

Lecture 9: Jan 26. Introduction to joint distributions Ross 6.1.

9.1 Joint and marginal (cumulative) distribution functions

For two random variables X and Y the joint cdf is $F_{X,Y}(a, b) = P(X \le a, Y \le b), -\infty < a, b < \infty$. Note that the *marginal cdfs* of X and of Y are given by

$$
F_X(a) = P(X \le a) = P(X \le a, Y < \infty) = P(\lim_{b \to \infty} P(X \le a, Y \le b))
$$
\n
$$
= \lim_{b \to \infty} P(X \le a, Y \le b) = \lim_{b \to \infty} F_{X,Y}(a, b) \equiv F_{X,Y}(a, \infty)
$$
\n
$$
F_Y(b) = P(Y \le b) = \lim_{a \to \infty} F_{X,Y}(a, b) \equiv F_{X,Y}(\infty, b)
$$

Just as in 1 dimension, we can get all other probabilities from $F_{X,Y}$. For example (see picture):

$$
P(a_1 < X \le a_2, \ b_1 < Y \le b_2) \ = \ F_{X,Y}(a_2, b_2) - F_{X,Y}(a_1, b_2) \ - \ F_{X,Y}(a_2, b_1) \ + \ F_{X,Y}(a_1, b_1)
$$

9.2 Joint and marginal probability mass functions

If X and Y are discrete random variables the joint pmf is $p_{X,Y}(x, y) = P(X = x, y = y)$ for $x \in \mathcal{X}, y \in \mathcal{Y}$. Then the *marginal pmfs* of X and of Y are

$$
p_X(x) = P(X = x) = \sum_{y \in Y} p_{X,Y}(x, y), \text{ and } p_Y(y) = \sum_{x \in X} p_{X,Y}(x, y).
$$

Note $p_X(x) > 0$ for $x \in \mathcal{X}$, and $p_Y(y) > 0$ for $y \in \mathcal{Y}$, but $p_{X,Y}(x, y)$ can be 0 for some $x \in \mathcal{X}$, $y \in \mathcal{Y}$.

9.3 The multinomial distribution

If we take a sample size n (with replacement) and there are r types, with type i having probability p_i , $i = 1, ..., r$ and $\sum_{i=1}^{r} p_i = 1$. Let X_i be the number of type i in the sample $(i = 1, ..., r)$: $\sum_{i=1}^{r} X_i = n$:

$$
P(X_1 = n_1, X_2 = n_2, ..., X_r = n_r) = \frac{n!}{n_1! \ n_2! ... n_k!} p_1^{n_1} p_2^{n_2} ... p_r^{n_r}
$$

Recall (Ross Ch 1.5), number of ways of arranging n_1 objects type-1, n_2 objects type-2, ... n_k objects type-k,

where $n_1 + n_2 + ... + n_k = n$ is $n!/(n_1! n_2!...n_k!)$.

Example: There are 4 ABO blood types, A, B, AB and O. For the USA population, roughly, $P(A) = 0.36$, $P(B) = 0.20, P(AB) = 0.08$, and $P(O) = 0.36$. Twelve students go to donate blood: what is the probability 5 are type A , 2 are type B , one is AB , and 4 are type O ? Answer:

$$
\frac{12!}{5! \times 2! \times 1! \times 4!} (0.36)^5 (0.2)^2 (0.08)^1 (0.36)^4 = 914760 \times 3.25^{-7} = 0.297.
$$

9.4 Joint and marginal probability density functions

(i) Random variables X and Y are jointly continuous if there is a function $f_{X,Y}(x, y)$ defined for all real x and y, such that for every (?) set C in \mathbb{R}^2 , $P((X,Y) \in C) = \int \int_{(x,y) \in C} f_{X,Y}(x,y) dx dy$. Then $f_{X,Y}(x, y)$ is the *joint pdf* of X and Y.

$$
(ii)
$$

(ii)
$$
F_{X,Y}(a,b) = P(X \in (-\infty, a], Y \in (-\infty, b]) = \int_{y=-\infty}^{b} \int_{x=-\infty}^{a} f_{X,Y}(x, y) dx dy
$$

so $f_{X,Y}(a,b) = \frac{\partial^2}{\partial a \partial b} F_{X,Y}(a,b)$

(iii)
$$
P(X \in A) = P(X \in A, Y \in (-\infty, \infty]) = \int_{X \in A} \int_{y=-\infty}^{\infty} f_{X,Y}(x, y) dx dy = \int_{X \in A} f_X(x) dx
$$

where $f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) dy$

So $f_X(x)$ is pdf of X and similarly pdf of Y is $f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x, y) dx$