
Lecture 1: Jan 5. Review of random variables Ross 4.2-4.5, 5.1-5.2

1.1 Definitions

(i) Definition: A random variable X is a real-valued function on the sample space.

(ii) Definition: A random variable X is discrete if it can take only a discrete set of values.

(iii) Definition: A continuous random variable X is one that takes values in (−∞,∞). That is, in principle.

In practice, some values may be impossible.

1.2 Examples

(i) Discrete (finite): the number of heads in 10 tosses of a fair coin.

(ii) Discrete (countable): the number of traffic accidents in a large city in a year.

(iii) Continuous (bounded range): A random number between a and b: values in the interval (a, b).

(iv) Continuous (unbounded range): The waiting time until the bus arrives: values in (0,∞).

1.3 Probability mass function (pmf) or density (pdf)

(i) Definition: The probability mass function (p.m.f.) of a discrete random variable X is the set of probabil-

ities P (X = x) for each of the values x ∈ X that X can take.

(ii) P (X = x) ≥ 0 for each x ∈ X and
∑

x P (X = x) = 1 where the sum is over all x ∈ X .

(iii) Definition: The probability density function (p.d.f.) of a continuous random variable X is a non-negative

function fX defined for all values x in (−∞,∞) such that for any subset B for which X ∈ B is an event

P (X ∈ B) =

∫
B

fX(x) dx

(iv) X takes some value in (−∞,∞) so

1 = P (−∞ < X < ∞) =

∫
∞

−∞

fX(x) dx

1.4 Examples

(i) Example (i): Binomial: B(10, 1

2
). P (X = x) = (

10

x
)(1/2)10 for x = 0, 1, 2, ...10.

(ii) Example (ii): Poisson: Po(µ) mean µ. P (X = x) = exp(−µ)µx/x! for x = 0, 1, 2, 3, 4.....

(iii) Example (iii): Uniform p.d.f:

fX(x) =
1

(b − a)
for a ≤ x ≤ b and fX(x) = 0 otherwise.

(iv) Example (iv): Exponential p.d.f
fX(x) = λ exp(−λx) for x ≥ 0 and fX(x) = 0 if x < 0.

1.5 Expectations of (functions of) random variables

(i) Discrete case (Ross, 4.3):

If X is discrete with p.m.f. P (X = x) = pX(x) > 0 for x ∈ X , the expected value of X denoted E(X) is

E(X) =
∑

x∈X x pX(x), provided this sum exists and is finite.

(ii) Continuous case (Ross 5.2)

If X is continuous with p.d.f. fX(x), fX(x) ≥ 0 for −∞ < x < ∞. the expected value of X denoted E(X) is

E(X) =
∫
∞

−∞
xfX(x) dx, provided this integral exists and is finite. (Note fX(x) dx ≈ P (x < X ≤ x+dx).)

(iii) Functions of a random variable:

E(g(X)) =
∑

x g(x)pX(x) (discrete), or E(g(X)) =
∫
x
g(x)fX(x) dx (continuous).

(iv) Variance: If E(X) = µ, var(X) = E(X − µ)2. In fact, var(X) = E(X2) − (E(X))2. Note var(X) ≥ 0.
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Lecture 2: Jan 7. Review of Continuous random variables Ross 5.3-5.

2.1 The probability density function: definition and basic properties.

(i) For a subset of the real line B:

P (X ∈ B) =

∫
B

fX(x) dx

(ii) In fact, events can be made up of unions and intersections of intervals of the form (a, b]:

P (a < X ≤ b) =

∫
b

a

fX(x) dx

(iii) Note the value at the boundary does not matter:

P (X = a) =

∫
a

a

fX(x) dx = 0 for any continuous random variable.

(iv) Note: fX(x) = 0 is possible for some x-values (see the p.m.f).

For example, if X ≥ 0 (as in the waiting-time example), f(x) = 0, if x < 0.

2.2 The cumulative distribution function of X is

FX(x) = P (−∞ < X ≤ x)

The cdf is defined for any random variable, but it is most useful for continuous random variables. In this case

FX(x) =

∫
x

−∞

fX(z) dz and fX(x) =
d

dx
FX(x)

2.3 The Uniform distribution on (a, b).

f(x) =
1

(b − a)
for a ≤ x ≤ b and f(x) = 0 otherwise.

If a = 0 and b = 1, fX(x) = 1 and FX(x) = x on 0 < x < 1. E(X) = 1/2, var(X) = 1/12.

2.4 The exponential distribution with rate parameter λ: E(λ).

f(x) = λ exp(−λx) for x ≥ 0 and f(x) = 0 if x < 0.

FX(x) = 1 − exp(−λx) for x > 0. E(X) = 1/λ, var(X) = 1/λ2.

2.5 The Normal distribution with mean µ and variance σ2

fX(x) =
1√

2πσ2
exp(−(x − µ)2

2σ2
) −∞ < x < ∞

E(X) = µ. var(X) = σ2.

If X ∼ N(µ, σ2), then (X − µ)/σ ∼ N(0, 1).

2.6 Location and scale

(i) A location parameter a shifts a probability density: the pdf is a function of (x − a). For example, we can

shift a uniform U(0, 1) pdf to a uniform U(a, a + 1) pdf. If X ∼ U(0, 1), Y = a + X ∼ U(a, a + 1).

(ii) A scale parameter stretches (or shrinks) a probability density. For example, to transform a Uniform U(0, 1)

density to a Uniform U(a, b), we shift by a and scale by (b− a). If X ∼ U(0, 1), Y = a + (b− a)X ∼ U(a, b).

(iii) The parameter λ−1 of an exponential random variable is also a scale parameter.

If X ∼ E(λ), then λX ∼ E(1). If X ∼ E(λ), then Y = kX ∼ E(λ/k).

(iv) A Normal random variable has both location µ and scale σ.

If X ∼ N(µ, σ2), then (X −µ)/σ ∼ N(0, 1). If X ∼ N(µ, σ2), then Y = aX + b ∼ N(aµ+ b, a2σ2).
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Lecture 3; Jan 9. Review of the Bernoulli process

3.1: The process

0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1: Each trial is success (1) or not (0).

X1X2X3X4.... ...X25...: Each Xi is 0 or 1.

... ... ... T5... ... ... T10... ... ... T15... ... ... T20... ... ... T25...: Tn = X1 + .... + Xn

−−−Y1 −−−−Y2Y3 −−Y4 −−−−−−−−− Y5 −−Y6 −−− Y7: Yr is rth inter-arrival time

... ...W1... ... ...W2W3.. ..W4... ... ... ... ... ...W5... ...W6... ...W7: Wr is total waiting time to rth 1.

The Bernoulli process is defined by Xi independent, with P (Xi = 1) = p and P (Xi = 0) = (1 − p).

Tn = X1 + ... + Xn is number of successes (i.e. 1s) in first n trials.

Yr is the inter-arrival time: number of trials from (r − 1)th success to r th.

Wr = Y1 + Y2 + ... + Yr is number of trials to r th. success.

Y ∗
r = Yr − 1: number of failures (0) before next success (1).

W ∗
r = Y ∗

1 + ... + Y ∗
r : number of failures (0) before r th success. Note: Wr > n if and only if Tn < r.

3.2: Bernoulli and Binomial random variables Ross 4.6

(i) Xi is Bernoulli(p). P (Xi = 1) = p, P (Xi = 0) = (1 − p).

E(Xi) = p × 1 + (1 − p) × 0 = p

E(X2
i
) = p × 12 + (1 − p) × 02 = p, so var(Xi) = E(X2

i
) − (E(Xi))

2 = p − p2 = p(1 − p).

Tn = X1 + ... + Xn is Binomial (n, p).

The probability of each sequence of k 1’s and (n− k) 0’s is pk(1− p)n−k and there are (
n

k
) such sequences.

P (Tn = k) = (
n

k
)pk(1 − p)n−k.

Expectations always add: E(Tn) = E(X1) + ... + E(Xn) = p + p + ... + p = np.

In general variances do NOT add, but here they do: var(Tn) = var(X1) + ... + var(Xn) = np(1 − p).

3.3: Geometric and Negative Binomial random variables Ross 4.8.1, 4.8.2

Yr are independent, and have Geometric (p) distribution: P (Y = k) = (1 − p)k−1p, for k = 1, 2, 3, .....

E(Y ) =
∑

∞
k=1 k(1 − p)k−1p = p/(1 − (1 − p))2 = 1/p. var(Y ) = (1 − p)/p2.

Y ∗ = (Y − 1), P (Y ∗ = k) = (1 − p)kp, for k = 0, 1, 2, 3....

E(Y ∗
r ) = E(Y ) − 1 = (1 − p)/p, var(Y ∗) = var(Y ). (Recall E(aY + b) = aE(Y ) + b and var(aY + b) =

a2var(Y )).

Wr = Y1 + ... + Yr. Expectations add, so E(Wr) = r/p. Again the variances do add, var(Wr) = r(1−p)/p2.

P (Wr = k) = P (r−1 successes in k−1 trials, and then success) = (
k − 1

r − 1
)(1−p)k−rpr−1p for k = r, r+1, ....

W ∗
r = Wr − r, E(W ∗

r ) = E(Wr) − r, var(W ∗
r ) = var(Wr)

P (W ∗
r = k) = P (r − 1 successes in r + k − 1 trials, and then success) = (

r + k − 1

r − 1
)(1 − p)kpr−1p

for k = 0, 1, 2, 3...

3.4 A reminder about the hypergeometric distribution Ross 4.8.3

Example: the number of red fish, in sampling n fish without replacement, from a pond in which there are N

fish of which m are red.

P (X = x) = (
m

x
)(

N − m

n − x
)/(

N

n
) for x = max(0, m + n − N), .....min(m, n).
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Lecture 4; Jan 12. Introduction to the Poisson process Ross 4.7, 9.1

4.1 The process

Events occur randomly and independently in time, at rate λ.

More formally: the numbers of events N in disjoint time intervals are independent, and the probability

distribution of the number of events N(ℓ) in an interval depends only on its length, ℓ. Additionally, P (N(h) =

1) = λh + o(h), P (N(h) ≥ 2) = o(h).

4.2 The waiting time T to an event

The waiting time T to an event is > s, if there are no events in (0, s). That is P (T > s) = P (N(s) = 0) ≡
P0(s).

P0(s + h) = P0(s) × P0(h) = P0(s)(1 − λh − o(h))

P0(s + h) − P0(s) = −λhP0(s) + o(h)

dP0/P0 = −λds or log(P0) = −λs with P0(0) = 1

So P (T > s) = P0(s) = exp(−λs)

So FT (s) = P (T ≤ s) = 1 − P (T > s) = 1 − exp(−λs)

So fT (s) = F ′
T (s) = λ exp(−λs) on 0 < s < ∞

That is, regardless of where we start waiting, the waiting time to an event is exponential with rate parameter

λ. Recall the “forgetting property” of the exponential: P (T > t + s|T > t) = P (T > s).

4.3 The number of events N(s) in a time interval length s

Let N(s) be the number of events in interval (0, s) and Pn(s) = P (N(s) = n).

Note from 4.2, P0(s) = P (T > s) = exp(−λs). Then

Pn(s + h) = Pn(s)(1 − λh − o(h)) + Pn−1(s)(λh + o(h)) + o(h)

Pn(s + h) − Pn(s) = λh(Pn−1(s) − Pn(s)) + o(h)

P ′
n(s) = λ(Pn−1(s) − Pn(s)) letting h → 0

Hence from P0(s) = exp(−λs) we could determine P1, P2, ....

Instead, consider qn(s) = exp(−λs)(λs)n/n!.

Then q′n(s) = exp(−λs)λnnsn−1/n! − λ exp(−λs)(λs)n/n! = λ(qn−1(s) − qn(s)).

That is, Pn(s) ≡ qn(s). That is N(s) is a Poisson random variable with mean λs.

4.4 The conditional distribution of times of events

Suppose we know exactly 1 event occurred in (0, s). At what time T did it occur?

This is a continuous random variable: P (T = t) = 0 for every t.

Instead consider the cdf P (T ≤ t):

FT (t) = P (T ≤ t | N(s) = 1) = P (T ≤ t ∩ N(s) = 1)/P (N(s) = 1)

= P1(t)P0(s − t)/P1(s) = (λt exp(−λt)) exp(−λ(s − t))/(λs exp(−λs)) = t/s

So FT (t) = t/s on 0 < t < s, or fT (t) = 1/s, 0 < t < s.

That is T is uniform on the interval (0, s).
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