Lecture 1: Jan 5. Review of random variables Ross 4.2-4.5, 5.1-5.2

1.1 Definitions

(i) **Definition:** A random variable X is a real-valued function on the sample space.

(ii) **Definition:** A random variable X is *discrete* if it can take only a discrete set of values.

(iii) Definition: A continuous random variable X is one that takes values in $(-\infty, \infty)$. That is, in principle. In practice, some values may be impossible.

1.2 Examples

(i) Discrete (finite): the number of heads in 10 tosses of a fair coin.

(ii) Discrete (countable): the number of traffic accidents in a large city in a year.

(iii) Continuous (bounded range): A random number between a and b: values in the interval (a, b) .

(iv) Continuous (unbounded range): The waiting time until the bus arrives: values in $(0, \infty)$.

1.3 Probability mass function (pmf) or density (pdf)

(i) **Definition:** The probability mass function $(p.m.f.)$ of a discrete random variable X is the set of probabilities $P(X = x)$ for each of the values $x \in \mathcal{X}$ that X can take.

(ii) $P(X = x) \ge 0$ for each $x \in \mathcal{X}$ and $\sum_{x} P(X = x) = 1$ where the sum is over all $x \in \mathcal{X}$.

(iii) **Definition:** The *probability density function* (p.d.f.) of a continuous random variable X is a non-negative function f_X defined for all values x in $(-\infty, \infty)$ such that for any subset B for which $X \in B$ is an event

$$
P(X \in B) = \int_B f_X(x) \ dx
$$

(iv) X takes some value in $(-\infty, \infty)$ so

$$
1 = P(-\infty < X < \infty) = \int_{-\infty}^{\infty} f_X(x) dx
$$

1.4 Examples

(i) Example (i): *Binomial*: $B(10, \frac{1}{2})$ $\frac{1}{2}$). $P(X = x) = {10}$ \int_{x}^{10})(1/2)¹⁰ for $x = 0, 1, 2, ...$ 10.

(ii) Example (ii): *Poisson:* $Po(\mu)$ mean μ . $P(X = x) = \exp(-\mu)\mu^x/x!$ for $x = 0, 1, 2, 3, 4....$

(iii) Example (iii): $Uniform\ p.d.f.$

$$
f_X(x) = \frac{1}{(b-a)}
$$
 for $a \le x \le b$ and $f_X(x) = 0$ otherwise.

(iv) Example (iv): Exponential p.d.f

$$
f_X(x) = \lambda \exp(-\lambda x)
$$
 for $x \ge 0$ and $f_X(x) = 0$ if $x < 0$.

1.5 Expectations of (functions of) random variables

(i) Discrete case (Ross, 4.3):

If X is discrete with p.m.f. $P(X = x) = p_X(x) > 0$ for $x \in \mathcal{X}$, the expected value of X denoted $E(X)$ is $E(X) = \sum_{x \in \mathcal{X}} x \ p_X(x)$, provided this sum exists and is finite.

(ii) Continuous case (Ross 5.2)

If X is continuous with p.d.f. $f_X(x)$, $f_X(x) \geq 0$ for $-\infty < x < \infty$. the expected value of X denoted E(X) is $E(X) = \int_{-\infty}^{\infty} x f_X(x) dx$, provided this integral exists and is finite. (Note $f_X(x) dx \approx P(x < X \leq x+dx)$.) (iii) Functions of a random variable:

 $E(g(X)) = \sum_{x} g(x)p_X(x)$ (discrete), or $E(g(X)) = \int_x g(x)f_X(x) dx$ (continuous).

(iv) Variance: If $E(X) = \mu$, $var(X) = E(X - \mu)^2$. In fact, $var(X) = E(X^2) - (E(X))^2$. Note $var(X) \ge 0$.

Lecture 2: Jan 7. Review of Continuous random variables Ross 5.3-5.

2.1 The probability density function: definition and basic properties.

(i) For a subset of the real line B :

$$
P(X \in B) = \int_B f_X(x) \ dx
$$

(ii) In fact, events can be made up of unions and intersections of intervals of the form $(a, b]$:

$$
P(a < X \le b) = \int_a^b f_X(x) \, dx
$$

(iii) Note the value at the boundary does not matter:

$$
P(X = a) = \int_{a}^{a} f_X(x) dx = 0
$$
 for any continuous random variable.

(iv) Note: $f_X(x) = 0$ is possible for some x-values (see the p.m.f).

For example, if $X \geq 0$ (as in the waiting-time example), $f(x) = 0$, if $x < 0$.

2.2 The *cumulative distribution function* of X is

$$
F_X(x) = P(-\infty < X \le x)
$$

The cdf is defined for any random variable, but it is most useful for continuous random variables. In this case

$$
F_X(x) = \int_{-\infty}^x f_X(z) dz
$$
 and $f_X(x) = \frac{d}{dx} F_X(x)$

2.3 The Uniform distribution on (a, b) .

$$
f(x) = \frac{1}{(b-a)}
$$
 for $a \le x \le b$ and $f(x) = 0$ otherwise.

If $a = 0$ and $b = 1$, $f_X(x) = 1$ and $F_X(x) = x$ on $0 < x < 1$. $E(X) = 1/2$, $var(X) = 1/12$.

2.4 The exponential distribution with rate parameter λ : $\mathcal{E}(\lambda)$.

$$
f(x) = \lambda \exp(-\lambda x) \text{ for } x \ge 0 \text{ and } f(x) = 0 \text{ if } x < 0.
$$

 $F_X(x) = 1 - \exp(-\lambda x)$ for $x > 0$. $E(X) = 1/\lambda$, $var(X) = 1/\lambda^2$.

2.5 The Normal distribution with mean μ and variance σ^2

$$
f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{(x-\mu)^2}{2\sigma^2}) - \infty < x < \infty
$$

 $E(X) = \mu$. $var(X) = \sigma^2$. If $X \sim N(\mu, \sigma^2)$, then $(X - \mu)/\sigma \sim N(0, 1)$. 2.6 Location and scale

(i) A location parameter a shifts a probability density: the pdf is a function of $(x - a)$. For example, we can shift a uniform $U(0, 1)$ pdf to a uniform $U(a, a + 1)$ pdf. If $X \sim U(0, 1)$, $Y = a + X \sim U(a, a + 1)$.

(ii) A scale parameter stretches (or shrinks) a probability density. For example, to transform a Uniform $U(0, 1)$ density to a Uniform $U(a, b)$, we shift by a and scale by $(b - a)$. If $X \sim U(0, 1)$, $Y = a + (b - a)X \sim U(a, b)$. (iii) The parameter λ^{-1} of an exponential random variable is also a scale parameter.

If
$$
X \sim \mathcal{E}(\lambda)
$$
, then $\lambda X \sim \mathcal{E}(1)$.
If $X \sim \mathcal{E}(\lambda)$, then $Y = kX \sim \mathcal{E}(\lambda/k)$.

(iv) A Normal random variable has both location μ and scale σ . If $X \sim N(\mu, \sigma^2)$, then $(X - \mu)/\sigma \sim N(0, 1)$.
If $X \sim N(\mu, \sigma^2)$, then $Y = aX + b \sim N(a\mu + b, a^2\sigma^2)$.

Lecture 3; Jan 9. Review of the Bernoulli process

3.1: The process 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1: Each trial is success (1) or not (0). $X_1X_2X_3X_4...$ $X_{25}...$: Each X_i is 0 or 1. $T_5...$ $T_{10}...$ $T_{15}...$ $T_{20}...$ $T_{25}...$: $T_n = X_1 + ... + X_n$ − − −Y¹ − − − −Y2Y³ − −Y⁴ − − − − − − − − − Y⁵ − −Y⁶ − − − Y7: Y^r is rth inter-arrival time ... $... W_1...$... $... W_2 W_3...$ $... W_4...$... $...$... $... W_5...$ $... W_6...$ $... W_7:$ W_r is total waiting time to rth 1. The Bernoulli process is defined by X_i independent, with $P(X_i = 1) = p$ and $P(X_i = 0) = (1 - p)$. $T_n = X_1 + ... + X_n$ is number of *successes* (i.e. 1s) in first *n* trials. Y_r is the *inter-arrival time*: number of trials from $(r-1)$ th success to r th. $W_r = Y_1 + Y_2 + \dots + Y_r$ is number of trials to r th. success. $Y_r^* = Y_r - 1$: number of failures (0) before next success (1). $W_r^* = Y_1^* + ... + Y_r^*$: number of failures (0) before r th success. Note: $W_r > n$ if and only if $T_n < r$. 3.2: Bernoulli and Binomial random variables Ross 4.6 (i) X_i is Bernoulli(p). $P(X_i = 1) = p$, $P(X_i = 0) = (1 - p)$. $E(X_i) = p \times 1 + (1-p) \times 0 = p$ $E(X_i^2) = p \times 1^2 + (1-p) \times 0^2 = p$, so $var(X_i) = E(X_i^2) - (E(X_i))^2 = p - p^2 = p(1-p)$. $T_n = X_1 + ... + X_n$ is Binomial (n, p) .

The probability of each sequence of k 1's and $(n-k)$ 0's is $p^k(1-p)^{n-k}$ and there are $\binom{n}{k}$ $\binom{n}{k}$ such sequences. $P(T_n = k) = \binom{n}{k}$ $\binom{n}{k} p^k (1-p)^{n-k}.$

Expectations always add: $E(T_n) = E(X_1) + ... + E(X_n) = p + p + ... + p = np.$ In general variances do NOT add, but here they do: $var(T_n) = var(X_1) + ... + var(X_n) = np(1 - p)$.

3.3: Geometric and Negative Binomial random variables Ross 4.8.1, 4.8.2

 Y_r are independent, and have Geometric (p) distribution: $P(Y = k) = (1 - p)^{k-1}p$, for $k = 1, 2, 3, \dots$ $E(Y) = \sum_{k=1}^{\infty} k(1-p)^{k-1}p = p/(1-(1-p))^2 = 1/p. \text{ var}(Y) = (1-p)/p^2.$ $Y^* = (Y - 1), P(Y^* = k) = (1 - p)^k p$, for $k = 0, 1, 2, 3...$ $E(Y_r^*) = E(Y) - 1 = (1 - p)/p$, $var(Y^*) = var(Y)$. (Recall $E(aY + b) = aE(Y) + b$ and $var(aY + b) = aE(Y) - 1$ $a^2\text{var}(Y)$). $W_r = Y_1 + ... + Y_r$. Expectations add, so $E(W_r) = r/p$. Again the variances do add, var $(W_r) = r(1-p)/p^2$. $P(W_r = k) = P(r-1 \text{ successes in } k-1 \text{ trials, and then success}) = \left(\begin{array}{c} k-1 \ r-1 \end{array}\right)$ $r-1$ $)(1-p)^{k-r} p^{r-1} p$ for $k = r, r+1,$ $W_r^* = W_r - r$, $E(W_r^*) = E(W_r) - r$, $var(W_r^*) = var(W_r)$ $P(W_r^* = k) = P(r-1 \text{ successes in } r+k-1 \text{ trials, and then success}) = \begin{pmatrix} r+k-1 \\ r-1 \end{pmatrix}$ $r-1$ $(1-p)^k p^{r-1} p$

for $k = 0, 1, 2, 3...$

3.4 A reminder about the hypergeometric distribution Ross 4.8.3

Example: the number of red fish, in sampling n fish without replacement, from a pond in which there are N fish of which m are red.

$$
P(X = x) = {m \choose x} {N-m \choose n-x} / {N \choose n}
$$
 for $x = \max(0, m+n-N), \dots, \min(m, n).$

Lecture 4; Jan 12. Introduction to the Poisson process Ross 4.7, 9.1

4.1 The process

Events occur *randomly and independently* in time, at rate λ .

More formally: the numbers of events N in disjoint time intervals are independent, and the probability distribution of the number of events $N(\ell)$ in an interval depends only on its length, ℓ . Additionally, $P(N(h) =$ $1) = \lambda h + o(h), P(N(h) \geq 2) = o(h).$

4.2 The waiting time T to an event

The waiting time T to an event is $> s$, if there are no events in $(0, s)$. That is $P(T > s) = P(N(s) = 0) \equiv$ $P_0(s)$.

$$
P_0(s+h) = P_0(s) \times P_0(h) = P_0(s)(1 - \lambda h - o(h))
$$

\n
$$
P_0(s+h) - P_0(s) = -\lambda h P_0(s) + o(h)
$$

\n
$$
dP_0/P_0 = -\lambda ds \text{ or } log(P_0) = -\lambda s \text{ with } P_0(0) = 1
$$

\nSo $P(T > s) = P_0(s) = \exp(-\lambda s)$
\nSo $F_T(s) = P(T \le s) = 1 - P(T > s) = 1 - \exp(-\lambda s)$
\nSo $f_T(s) = F'_T(s) = \lambda \exp(-\lambda s) \text{ on } 0 < s < \infty$

That is, regardless of where we start waiting, the waiting time to an event is exponential with rate parameter λ. Recall the "forgetting property" of the exponential: $P(T > t + s | T > t) = P(T > s)$.

4.3 The number of events $N(s)$ in a time interval length s

Let $N(s)$ be the number of events in interval $(0, s)$ and $P_n(s) = P(N(s) = n)$. Note from 4.2, $P_0(s) = P(T > s) = \exp(-\lambda s)$. Then

$$
P_n(s+h) = P_n(s)(1 - \lambda h - o(h)) + P_{n-1}(s)(\lambda h + o(h)) + o(h)
$$

\n
$$
P_n(s+h) - P_n(s) = \lambda h(P_{n-1}(s) - P_n(s)) + o(h)
$$

\n
$$
P'_n(s) = \lambda (P_{n-1}(s) - P_n(s)) \text{ letting } h \to 0
$$

Hence from $P_0(s) = \exp(-\lambda s)$ we could determine $P_1, P_2, ...$ Instead, consider $q_n(s) = \exp(-\lambda s)(\lambda s)^n/n!$. Then $q'_n(s) = \exp(-\lambda s)\lambda^n n s^{n-1}/n! - \lambda \exp(-\lambda s)(\lambda s)^n/n! = \lambda (q_{n-1}(s) - q_n(s)).$ That is, $P_n(s) \equiv q_n(s)$. That is $N(s)$ is a Poisson random variable with mean λs .

4.4 The conditional distribution of times of events

Suppose we know exactly 1 event occurred in $(0, s)$. At what time T did it occur? This is a continuous random variable: $P(T = t) = 0$ for every t. Instead consider the cdf $P(T \leq t)$:

$$
F_T(t) = P(T \le t | N(s) = 1) = P(T \le t \cap N(s) = 1) / P(N(s) = 1)
$$

= $P_1(t)P_0(s-t)/P_1(s) = (\lambda t \exp(-\lambda t)) \exp(-\lambda(s-t))/(\lambda s \exp(-\lambda s)) = t/s$

So $F_T(t) = t/s$ on $0 < t < s$, or $f_T(t) = 1/s$, $0 < t < s$. That is T is uniform on the interval $(0, s)$.