Lecture 1: Jan 5. Review of random variables Ross 4.2-4.5, 5.1-5.2

1.1 Definitions

- (i) **Definition:** A random variable X is a real-valued function on the sample space.
- (ii) **Definition:** A random variable X is discrete if it can take only a discrete set of values.
- (iii) **Definition:** A *continuous* random variable X is one that takes values in $(-\infty, \infty)$. That is, in principle. In practice, some values may be impossible.

1.2 Examples

- (i) Discrete (finite): the number of heads in 10 tosses of a fair coin.
- (ii) Discrete (countable): the number of traffic accidents in a large city in a year.
- (iii) Continuous (bounded range): A random number between a and b: values in the interval (a, b).
- (iv) Continuous (unbounded range): The waiting time until the bus arrives: values in $(0, \infty)$.

1.3 Probability mass function (pmf) or density (pdf)

- (i) **Definition:** The probability mass function (p.m.f.) of a discrete random variable X is the set of probabilities P(X = x) for each of the values $x \in \mathcal{X}$ that X can take.
- (ii) $P(X = x) \ge 0$ for each $x \in \mathcal{X}$ and $\sum_{x} P(X = x) = 1$ where the sum is over all $x \in \mathcal{X}$.
- (iii) **Definition:** The probability density function (p.d.f.) of a continuous random variable X is a non-negative function f_X defined for all values x in $(-\infty, \infty)$ such that for any subset B for which $X \in B$ is an event

$$P(X \in B) = \int_{B} f_X(x) \ dx$$

(iv) X takes some value in $(-\infty, \infty)$ so

$$1 = P(-\infty < X < \infty) = \int_{-\infty}^{\infty} f_X(x) dx$$

1.4 Examples

- (i) Example (i): Binomial: $B(10, \frac{1}{2})$. $P(X = x) = {10 \choose x} (1/2)^{10}$ for x = 0, 1, 2, ... 10.
- (ii) Example (ii): Poisson: Po(μ) mean μ . $P(X=x) = \exp(-\mu)\mu^x/x!$ for x=0,1,2,3,4....
- (iii) Example (iii): Uniform p.d.f.

$$f_X(x) = \frac{1}{(b-a)}$$
 for $a \le x \le b$ and $f_X(x) = 0$ otherwise.

(iv) Example (iv): Exponential p.d.f

$$f_X(x) = \lambda \exp(-\lambda x)$$
 for $x \ge 0$ and $f_X(x) = 0$ if $x < 0$.

1.5 Expectations of (functions of) random variables

- (i) Discrete case (Ross, 4.3):
- If X is discrete with p.m.f. $P(X = x) = p_X(x) > 0$ for $x \in \mathcal{X}$, the expected value of X denoted E(X) is $E(X) = \sum_{x \in \mathcal{X}} x \, p_X(x)$, provided this sum exists and is finite.
- (ii) Continuous case (Ross 5.2)
- If X is continuous with p.d.f. $f_X(x)$, $f_X(x) \ge 0$ for $-\infty < x < \infty$. the expected value of X denoted E(X) is $E(X) = \int_{-\infty}^{\infty} x f_X(x) dx$, provided this integral exists and is finite. (Note $f_X(x) dx \approx P(x < X \le x + dx)$.)
- (iii) Functions of a random variable:

$$E(g(X)) = \sum_{x} g(x) p_X(x)$$
 (discrete), or $E(g(X)) = \int_{x} g(x) f_X(x) dx$ (continuous).

(iv) Variance: If
$$E(X) = \mu$$
, $var(X) = E(X - \mu)^2$. In fact, $var(X) = E(X^2) - (E(X))^2$. Note $var(X) \ge 0$.

Lecture 2: Jan 7. Review of Continuous random variables Ross 5.3-5.

2.1 The probability density function: definition and basic properties.

(i) For a subset of the real line B:

$$P(X \in B) = \int_{B} f_X(x) \ dx$$

(ii) In fact, events can be made up of unions and intersections of intervals of the form (a, b]:

$$P(a < X \le b) = \int_a^b f_X(x) \ dx$$

(iii) Note the value at the boundary does not matter:

$$P(X = a) = \int_a^a f_X(x) dx = 0$$
 for any continuous random variable.

(iv) Note: $f_X(x) = 0$ is possible for some x-values (see the p.m.f).

For example, if $X \ge 0$ (as in the waiting-time example), f(x) = 0, if x < 0.

2.2 The cumulative distribution function of X is

$$F_X(x) = P(-\infty < X \le x)$$

The cdf is defined for any random variable, but it is most useful for continuous random variables. In this case

$$F_X(x) = \int_{-\infty}^x f_X(z) dz$$
 and $f_X(x) = \frac{d}{dx} F_X(x)$

2.3 The Uniform distribution on (a, b).

$$f(x) = \frac{1}{(b-a)}$$
 for $a \le x \le b$ and $f(x) = 0$ otherwise.

If a = 0 and b = 1, $f_X(x) = 1$ and $F_X(x) = x$ on 0 < x < 1. E(X) = 1/2, var(X) = 1/12.

2.4 The exponential distribution with rate parameter λ : $\mathcal{E}(\lambda)$.

$$f(x) = \lambda \exp(-\lambda x)$$
 for $x \ge 0$ and $f(x) = 0$ if $x < 0$.

$$F_X(x) = 1 - \exp(-\lambda x) \text{ for } x > 0. \ \mathrm{E}(X) = 1/\lambda, \ \mathrm{var}(X) = 1/\lambda^2.$$

2.5 The Normal distribution with mean μ and variance σ^2

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{(x-\mu)^2}{2\sigma^2}) - \infty < x < \infty$$

 $E(X) = \mu$. $var(X) = \sigma^2$.

If
$$X \sim N(\mu, \sigma^2)$$
, then $(X - \mu)/\sigma \sim N(0, 1)$.

2.6 Location and scale

(i) A location parameter a shifts a probability density: the pdf is a function of (x-a). For example, we can shift a uniform U(0,1) pdf to a uniform U(a,a+1) pdf. If $X \sim U(0,1)$, $Y=a+X \sim U(a,a+1)$.

(ii) A scale parameter stretches (or shrinks) a probability density. For example, to transform a Uniform U(0,1) density to a Uniform U(a,b), we shift by a and scale by (b-a). If $X \sim U(0,1)$, $Y = a + (b-a)X \sim U(a,b)$.

(iii) The parameter λ^{-1} of an exponential random variable is also a scale parameter.

If
$$X \sim \mathcal{E}(\lambda)$$
, then $\lambda X \sim \mathcal{E}(1)$.

If $X \sim \mathcal{E}(\lambda)$, then $Y = kX \sim \mathcal{E}(\lambda/k)$.

(iv) A Normal random variable has both location μ and scale σ .

If
$$X \sim N(\mu, \sigma^2)$$
, then $(X - \mu)/\sigma \sim N(0, 1)$. If $X \sim N(\mu, \sigma^2)$, then $Y = aX + b \sim N(a\mu + b, a^2\sigma^2)$.

Lecture 3; Jan 9. Review of the Bernoulli process

3.1: The process

0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 : Each trial is success (1) or not (0).

 $X_1X_2X_3X_4...$ Each X_i is 0 or 1.

... ... T_{5} T_{10} T_{15} T_{20} T_{25} ...: $T_n = X_1 + + X_n$

... $...W_1$... $...W_2W_3$... $...W_4$ $...W_5$... $...W_6$... $...W_7$: $...W_7$: ...

The Bernoulli process is defined by X_i independent, with $P(X_i = 1) = p$ and $P(X_i = 0) = (1 - p)$.

 $T_n = X_1 + ... + X_n$ is number of successes (i.e. 1s) in first n trials.

 Y_r is the inter-arrival time: number of trials from (r-1)th success to r th.

 $W_r = Y_1 + Y_2 + ... + Y_r$ is number of trials to r th. success.

 $Y_r^* = Y_r - 1$: number of failures (0) before next success (1).

 $W_r^* = Y_1^* + ... + Y_r^*$: number of failures (0) before r th success. **Note:** $W_r > n$ if and only if $T_n < r$.

3.2: Bernoulli and Binomial random variables Ross 4.6

(i) X_i is Bernoulli(p). $P(X_i = 1) = p$, $P(X_i = 0) = (1 - p)$.

 $E(X_i) = p \times 1 + (1-p) \times 0 = p$

 $E(X_i^2) = p \times 1^2 + (1-p) \times 0^2 = p$, so $var(X_i) = E(X_i^2) - (E(X_i))^2 = p - p^2 = p(1-p)$.

 $T_n = X_1 + \dots + X_n$ is Binomial (n, p).

The probability of each sequence of k 1's and (n-k) 0's is $p^k(1-p)^{n-k}$ and there are $\binom{n}{k}$ such sequences. $P(T_n=k)=\binom{n}{k}p^k(1-p)^{n-k}$.

Expectations always add: $E(T_n) = E(X_1) + ... + E(X_n) = p + p + ... + p = np$.

In general variances do NOT add, but here they do: $var(T_n) = var(X_1) + ... + var(X_n) = np(1-p)$.

3.3: Geometric and Negative Binomial random variables Ross 4.8.1, 4.8.2

 Y_r are independent, and have Geometric (p) distribution: $P(Y = k) = (1 - p)^{k-1}p$, for k = 1, 2, 3, ...

$$E(Y) = \sum_{k=1}^{\infty} k(1-p)^{k-1}p = p/(1-(1-p))^2 = 1/p. \ var(Y) = (1-p)/p^2.$$

$$Y^* = (Y-1), P(Y^* = k) = (1-p)^k p, \text{ for } k = 0, 1, 2, 3....$$

 $E(Y_r^*) = E(Y) - 1 = (1 - p)/p$, $var(Y^*) = var(Y)$. (Recall E(aY + b) = aE(Y) + b and $var(aY + b) = a^2var(Y)$).

 $W_r = Y_1 + ... + Y_r$. Expectations add, so $E(W_r) = r/p$. Again the variances do add, $var(W_r) = r(1-p)/p^2$.

$$P(W_r = k) = P(r-1 \text{ successes in } k-1 \text{ trials, and then success}) = {k-1 \choose r-1}(1-p)^{k-r}p^{r-1}p \text{ for } k = r, r+1, \dots$$

$$W_r^* = W_r - r, E(W_r^*) = E(W_r) - r, var(W_r^*) = var(W_r)$$

$$P(W_r^* = k) = P(r - 1 \text{ successes in } r + k - 1 \text{ trials, and then success}) = {r+k-1 \choose r-1}(1-p)^k p^{r-1}p$$

for k = 0, 1, 2, 3...

3.4 A reminder about the hypergeometric distribution Ross 4.8.3

Example: the number of red fish, in sampling n fish without replacement, from a pond in which there are N fish of which m are red.

$$P(X=x) \ = \ {m \choose x} {N-m \choose n-x} / {N \choose n} \text{ for } x \ = \ \max(0,m+n-N),.....\min(m,n).$$

Lecture 4; Jan 12. Introduction to the Poisson process Ross 4.7, 9.1

4.1 The process

Events occur randomly and independently in time, at rate λ .

More formally: the numbers of events N in disjoint time intervals are independent, and the probability distribution of the number of events $N(\ell)$ in an interval depends only on its length, ℓ . Additionally, $P(N(h) = 1) = \lambda h + o(h)$, $P(N(h) \ge 2) = o(h)$.

4.2 The waiting time T to an event

The waiting time T to an event is > s, if there are no events in (0, s). That is $P(T > s) = P(N(s) = 0) \equiv P_0(s)$.

$$P_{0}(s+h) = P_{0}(s) \times P_{0}(h) = P_{0}(s)(1-\lambda h - o(h))$$

$$P_{0}(s+h) - P_{0}(s) = -\lambda h P_{0}(s) + o(h)$$

$$dP_{0}/P_{0} = -\lambda ds \text{ or } log(P_{0}) = -\lambda s \text{ with } P_{0}(0) = 1$$
So $P(T > s) = P_{0}(s) = \exp(-\lambda s)$
So $F_{T}(s) = P(T \le s) = 1 - P(T > s) = 1 - \exp(-\lambda s)$
So $f_{T}(s) = F'_{T}(s) = \lambda \exp(-\lambda s) \text{ on } 0 < s < \infty$

That is, regardless of where we start waiting, the waiting time to an event is exponential with rate parameter λ . Recall the "forgetting property" of the exponential: P(T > t + s | T > t) = P(T > s).

4.3 The number of events N(s) in a time interval length s

Let N(s) be the number of events in interval (0, s) and $P_n(s) = P(N(s) = n)$.

Note from 4.2, $P_0(s) = P(T > s) = \exp(-\lambda s)$. Then

$$P_n(s+h) = P_n(s)(1 - \lambda h - o(h)) + P_{n-1}(s)(\lambda h + o(h)) + o(h)$$

$$P_n(s+h) - P_n(s) = \lambda h(P_{n-1}(s) - P_n(s)) + o(h)$$

$$P'_n(s) = \lambda(P_{n-1}(s) - P_n(s)) \text{ letting } h \to 0$$

Hence from $P_0(s) = \exp(-\lambda s)$ we could determine P_1, P_2, \dots

Instead, consider $q_n(s) = \exp(-\lambda s)(\lambda s)^n/n!$.

Then
$$q'_n(s) = \exp(-\lambda s)\lambda^n n s^{n-1}/n! - \lambda \exp(-\lambda s)(\lambda s)^n/n! = \lambda (q_{n-1}(s) - q_n(s)).$$

That is, $P_n(s) \equiv q_n(s)$. That is N(s) is a Poisson random variable with mean λs .

4.4 The conditional distribution of times of events

Suppose we know exactly 1 event occurred in (0, s). At what time T did it occur?

This is a continuous random variable: P(T = t) = 0 for every t.

Instead consider the cdf $P(T \leq t)$:

$$F_T(t) = P(T \le t \mid N(s) = 1) = P(T \le t \cap N(s) = 1)/P(N(s) = 1)$$

$$= P_1(t)P_0(s-t)/P_1(s) = (\lambda t \exp(-\lambda t)) \exp(-\lambda (s-t))/(\lambda s \exp(-\lambda s)) = t/s$$

So $F_T(t) = t/s$ on 0 < t < s, or $f_T(t) = 1/s$, 0 < t < s.

That is T is uniform on the interval (0, s).