Lecture 1: Jan 5. Review of random variables Ross 4.2-4.5, 5.1-5.2

1.1 Definitions

(i) Definition: A random variable X is a real-valued function on the sample space.

(ii) Definition: A random variable X is discrete if it can take only a discrete set of values.

(iii) Definition: A continuous random variable X is one that takes values in (—oo,00). That is, in principle.
In practice, some values may be impossible.

1.2 Examples

(i) Discrete (finite): the number of heads in 10 tosses of a fair coin.

(ii) Discrete (countable): the number of traffic accidents in a large city in a year.

(iii) Continuous (bounded range): A random number between a and b: values in the interval (a,b).

(iv) Continuous (unbounded range): The waiting time until the bus arrives: values in (0, c0).

1.3 Probability mass function (pmf) or density (pdf)

(i) Definition: The probability mass function (p.m.f.) of a discrete random variable X is the set of probabil-
ities P(X = x) for each of the values x € X’ that X can take.

(i) P(X =z) > 0foreach x € X and }_, P(X =) = 1 where the sum is over all z € X

(iii) Definition: The probability density function (p.d.f.) of a continuous random variable X is a non-negative

function fx defined for all values z in (—o0, 00) such that for any subset B for which X € B is an event
P(XeB) = / fx(x) dz
B
(iv) X takes some value in (—00,00) so -
1 = Pl—o<X<o0) = / fx(x) dz
—00
1.4 Examples
10
(i) Example (i): Binomial: B(10,1). P(X=2) = ( )(1/2)' for £ = 0,1,2,...10.
x

(ii) Example (ii): Poisson: Po(u) mean p.  P(X =) = exp(—p)p*/x! forxz = 0,1,2,3,4.....
(iii) Example (iii): Uniform p.d.f.

1
fx(x) = for a <x <band fx(x) = 0 otherwise.

(iv) Example (iv): Ezponential p.d.f (@) = Aexp(—Az) for 2> 0 and fx(z) = 0ifz <0,
1.5 Expectations of (functions of) random variables

(i) Discrete case (Ross, 4.3):

If X is discrete with pm.f. P(X =2z) = px(z) > 0 for € X, the ezpected value of X denoted E(X) is
E(X) = > ,cx px(x), provided this sum exists and is finite.

(ii) Continuous case (Ross 5.2)

If X is continuous with p.d.f. fx(x), fx(z) > 0 for —oco < & < co. the expected value of X denoted E(X) is
E(X) = [ xzfx(z)dz, provided this integral exists and is finite. (Note fx(z)dz ~ Pz < X < x+dz).)
(iii) Functions of a random variable:

E(9(X)) = >, g9(z)px(z) (discrete), or E(9(X)) = [, g(z)fx(x) dz (continuous).
(iv) Variance: If F(X) = u, var(X) = E(X — p)2 In fact, var(X) = E(X?) — (E(X))?. Note var(X) > 0.



Lecture 2: Jan 7. Review of Continuous random variables Ross 5.3-5.
2.1 The probability density function: definition and basic properties.
(i) For a subset of the real line B:

P(XeB) = /fo(x) dx

(ii) In fact, events can be made up of unions and intersections of intervals of the form (a, b]:

b
Pla<X<b) = / fx(z) do
(iii) Note the value at the boundary does not matter:
P(X =a) = / fx(x)dr = 0 for any continuous random variable.

(iv) Note: fx(z) = 0 is possible for some z-values (see the p.m.f).
For example, if X > 0 (as in the waiting-time example), f(x) =0, if z <O0.
2.2 The cumulative distribution function of X is
Fx(z) = P(—oo < X <)
The cdf is defined for any random variable, but it is most useful for continuous random variables. In this case

d

Fx(@) = [ x(@)ds and fx(@) = 2-Fx()

2.3 The Uniform distribution on (a,b).
flz) = b—a) fora <x <band f(z) = 0 otherwise.
—a

Ifa=0andb=1, fx(r)=1and Fx(z) =zon0<z < 1. E(X)=1/2, var(X) = 1/12.
2.4 The exponential distribution with rate parameter \: £(\).

f(z) = Aexp(—=Az) for z > 0 and f(x) = 0if z <O0.
Fx(x) = 1—exp(—Az) for . > 0. E(X) = 1/), var(X) = 1/)2.

2.5 The Normal distribution with mean ; and variance o2

1 (x—p)?
@ = g er

) —oo<z<oo

E(X) = p. var(X) = o2,

If X ~ N(u,0?), then (X —pu)/o ~ N(0,1).

2.6 Location and scale

(i) A location parameter a shifts a probability density: the pdf is a function of (x — a). For example, we can
shift a uniform U(0, 1) pdf to a uniform U(a,a + 1) pdf. If X ~U(0,1),Y =a+ X ~U(a,a+1).

(ii) A scale parameter stretches (or shrinks) a probability density. For example, to transform a Uniform U (0, 1)
density to a Uniform U(a,b), we shift by a and scale by (b—a). If X ~U(0,1),Y =a+(b—a)X ~ U(a,b).

(iii) The parameter A~! of an exponential random variable is also a scale parameter.

If X ~&(N), then A X ~ &£(1). If X ~E&(N), thenY =kX ~ EN/k).
(iv) A Normal random variable has both location p and scale o.
If X ~ N(p,0%), then (X —pu)/o ~ N(0,1). If X ~ N(p,0%),thenY =aX +b ~ N(ap+b,a’0?).



Lecture 3; Jan 9. Review of the Bernoulli process
3.1: The process
0010001100100000001001O0 0 1:Each trialis success (1) or not (0).

X1 X9X3Xy.... ...X95...: Each X; is 0 or 1.

......... Toeeo oo oo Tigee e oo Tiseer oo oo Togeee e oo Do Ty = X1 4o+ X,

- Y --—Yy--Yy-——————— Ys ——-Ys— — -V Y, is rth inter-arrival time

...... Wi oo . WoWs.. Wy o oo o oo W W LW, W W, is total waiting time to rth 1.
The Bernoulli process is defined by X; independent, with P(X; =1) = p and P(X; =0) = (1 — p).

T, = X1+ ...+ X, is number of successes (i.e. 1s) in first n trials.

Y, is the inter-arrival time: number of trials from (r — 1)th success to r th.

W, = Y1+ Y5+ ... 4 Y, is number of trials to r th. success.
Y = Y, —1: number of failures (0) before next success (1).
Wy = Y+ ...+ Y number of failures (0) before r th success. Note: W, > n if and only if T,, < r.
3.2: Bernoulli and Binomial random variables Ross 4.6
(i) X; is Bernoulli(p). P(X; =1) =p, P(X; =0) = (1 —p).
(Xi) = px1 + (1—-p)x0 =

(X?) = px12 + (1—-p) x 0% = p,sovar(X;) = E(X?) - (E(X;))? = p—p* = p(1 —p).
T, = X1 + ... + X, is Binomial (n,p).

tlj

n—k

The probability of each sequence of k 1’s and (n — k) 0’s is p*(1 — p)

P(T,=k) = () —p)"*

Expectations always add: E(7,,) = E(X;) + ... +E(X,) = p+p+..+p = np.
In general variances do NOT add, but here they do: var(7,,) = var(X;) + ... +var(X,) = np(l —p).

n
and there are ( L ) such sequences.

3.3: Geometric and Negative Binomial random variables Ross 4.8.1, 4.8.2
Y, are independent, and have Geometric (p) distribution: P(Y = k) = (1 — p)*~1p, for k =1,2,3, .....
E(Y) = 334 k(A -p)*p=p/(1-(1-p)* = 1/p. var(Y) = (1-p)/p*.

Y* = (Y —1), PY*=k) = (1—p)kp, for k=0,1,2,3....

EY¥) = EY)—1 = (1—-p)/p, var(Y*) = var(Y). (Recall E(aY + b) = aE(Y) 4+ b and var(aY +b) =
2var(Y)).

W, =Y; + ... + Y,.. Expectations add, so E(W,) = r/p. Again the variances do add, var(W,) = r(1—p)/p>.
P(W, = k) = P(r—1 successes in k—1 trials, and then success) = ( fj_ 1 )(1—p)k " ipfork =1 r+1,.
wy = W, —r, E(W}) =EW,) —r, var(W}) = var(W,)

( r+k—1 )

(1—p)rp =1p
r—1

P(W} =k) = P(r — 1 successes in r + k — 1 trials, and then success) =
for k=0,1,2,3...

3.4 A reminder about the hypergeometric distribution Ross 4.8.3

Example: the number of red fish, in sampling n fish without replacement, from a pond in which there are N
fish of which m are red.

P(X =1z) = ( ZL )( i:: )/( ]7\17 ) for x = max(0,m +n— N),....min(m,n).



Lecture 4; Jan 12. Introduction to the Poisson process Ross 4.7, 9.1

4.1 The process

Events occur randomly and independently in time, at rate .

More formally: the numbers of events N in disjoint time intervals are independent, and the probability
distribution of the number of events N (¢) in an interval depends only on its length, ¢. Additionally, P(N(h) =
1) = Ah +o(h), P(N(h) > 2) = o(h).

4.2 The waiting time T to an event

The waiting time 7" to an event is > s, if there are no events in (0,s). That is P(T'>s) = P(N(s) =0) =
Py(s).

Po(s+h) = Py(s) x Po(h) = Po(s)(1 — Ah — o(h))

Po(s+h) = Fo(s) = —AhPy(s)+o(h)
dPy/Py = —XAds or log(Py) =—As with Py(0) =1
So P(T>s) = PF(s) = exp(—As)
So Fr(s) = P(T'<s) = 1—-P(T>s) = 1—exp(—As)
So  fr(s) = Fp(s) = dexp(—As) on 0<s<o0

That is, regardless of where we start waiting, the waiting time to an event is exponential with rate parameter
A. Recall the “forgetting property” of the exponential: P(T >t + s|T >t) = P(T > s).

4.3 The number of events N(s) in a time interval length s

Let N(s) be the number of events in interval (0,s) and P,(s) = P(N(s) = n).

Note from 4.2, Py(s) = P(T > s) = exp(—As). Then

P,(s+h) = Pu(s)(1—=Ah—o(h))+ Pr—1(s)(Ah+o0(h)) + o(h)
P,(s+h)—P,(s) = Mu(P,—1(s) — P.(s)) + o(h)
Pl (s) = MUPu_1(s) — Py(s)) letting h — 0

Hence from Py(s) = exp(—As) we could determine Py, P, ....

Instead, consider g, (s) = exp(—As)(As)"/nl.

Then ¢/,(s) = exp(—As)A\"ns""1/n! — Xexp(—As)(As)"/n! = A(gn_1(5) — qu(5)).
That is, P,(s) = gn(s). That is N(s) is a Poisson random variable with mean As.
4.4 The conditional distribution of times of events

Suppose we know exactly 1 event occurred in (0, s). At what time T did it occur?
This is a continuous random variable: P(T = t) = 0 for every ¢.
Instead consider the cdf P(T < t):

P(T<t|N(s)=1) = P(T<t N N(s)=1)/P(N(s)=1)
= Pi(t)Py(s—1t)/Pi(s) = (Mexp(—=At))exp(—A(s—1))/(Asexp(—=As)) = t/s

Fr(t)

So Fr(t)=t/son0<t<s,or fr(t)=1/s, 0 <t <s.

That is T is uniform on the interval (0, s).



