Homework 7; Due 8.30 a.m. Wed Feb 25. Ross Problems: Ch 7; 75, 21, 23, 9, 32 (n=4 only!)

Ch 7; 75, By uniqueness of mgf, if $M_X(t) = \exp(2(e^t - 1))$, X is Poisson, mean 2. By uniqueness of mgf, if $M_Y(t) = ((3e^t + 1)/4)^{10}$, Y is Bin(10, 3/4). X and Y are independent. (a) P(X + Y = 2) = P(X = 0, Y = 2) + P(X = 1, Y = 1) + P(X = 2, Y = 0) $= e^{-2} \cdot (10.9/2) \cdot (3/4)^2 (1/4)^8 + 2e^{-2} \cdot 10 \cdot (3/4) \cdot (1/4)^9 + (2^2e^{-2}/2) \cdot (1/4)^{10}$ $= e^{-2} (405 + 60 + 2)/4^{10} = 6.03 \times 10^{-5}.$ (b) $P(XY = 0) = P(X = 0 \cup Y = 0) = P(X = 0) + P(Y = 0) - P(X = 0)P(Y = 0)$

(b)
$$P(XY = 0) = P(X = 0 \cup Y = 0) = P(X = 0) + P(Y = 0) - P(X = 0)P(Y = 0)$$

= $\exp(-2) + (1/4)^{10} - \exp(-2).(1/4)^{10} = 0.1353.$

(c) By independence: $E(XY) = E(X).E(Y) = 2 \times 10 \times (3/4) = 15.$

Ch 7; 21, (a) Let $X_i = 1$ if 3 people have birthday, day i, i = 1, ..., 365. $X_i = 0$ otherwise.

$$P(X_i = 1) = \binom{100}{3} (1/365)^3 (364/365)^9 7 = 0.002548. \ \mathrm{E}(\sum_i X_i) = 365 \times \mathrm{E}(X_i) = 365 \times 0.002548 = 0.9301.$$

(b) We will compute the expected number of days no one has as birthday. Then the number of distinct birthdays is all the other days.

Let $X_i = 1$ if no one has birthday day i; $X_i = 0$ otherwise. $P(X_i = 1) = (364/365)^{100} = 0.7601$. $E(\sum_i X_i) = 365 \times E(X_i) = 277.44$. The expected number of distinct birthdays is 365 - 277.44 = 87.56.

Ch 7; 23, After the transfer of balls, there are 20 balls in urn-2.

 $Y_i = 1$ if *i*th urn-2 white ball is selected (0 otherwise); $P(Y_i = 1) = 3/20$.

 X_i 11 if *i*th urn-1 white ball is first transferred and then selected; $P(X_i = 1) = (2/11) \times (3/20)$.

 $E(\sum_{i=1}^{5} X_{i} + \sum_{i=1}^{8} Y_{i}) = 5E(X_{i}) + 8E(Y_{i}) = (15/110) + (12/10) = 147/110.$

Ch 7; 9 (a) Let $X_i = 1$ is urn *i* is empty, 0 otherwise.

Probability ball j does not go in urn i is (j-1)/j for $j \ge i, 1$ otherwise.

 $P(X_i = 1) = \prod_{j=i}^n ((j-1)/j) = (i-1)/n.$

Expected number of empty urns is $\sum_{i=1}^{n} (i-1)/n = (n-1)(n-2)/2n$.

(b) Note only ball n can go in urn n. If it does, then ball n-1 must be the one in urn n-1 ... So event no urns are empty is event ball i goes in urn i, i = 1, ..., n. i.e. required probability is 1.(1/2).(1/3)...(1/n) = 1/n!.

Ch 7; 32 Consider k > i, and consider $P(X_k = 1 | X_i = 1)$. For ball $j \ge k$, prob ball j does not go in k given it does not go in i is ((j-2)/(j-1)). So $P(X_k = 1 | X_i = 1) = \prod_{j=k}^n ((j-2)/(j-1)) = (k-2)/(n-1)$, and $P(X_k = 1 \cap X_i = 1) = (i-1)(k-2)/n(n-1)$.

(It is sufficient to do this for the special case n = 4.)

From here we do the case n = 4 only!! Left hand table is $P(X_i = 1 \cap X_k = 1)$ and right is variances and covariances:

	1	2	3	4		1	2	3	4
1	0	0	0	0	1	0	0	0	0
2	0	(1/4)	1/12	1/6	2	0	3/16	-1/24	-1/48
3	0	1/12	(1/2)	1/3	3	0	-1/24	1/4	-1/24
4	0	1/6	1/3	(3/4)	4	0	-1/48	-1/24	3/16

Hence $\operatorname{var}(\sum_{i=1}^{4} X_i) = (1/48)(9 - 2 - 1 - 2 + 12 - 2 - 1 - 2 + 9) = 20/48 = 5/12.$