Homework 5; Due 8.30 a.m. Wed Feb 11. Ross Problems: Ch 6: 23, 27 (b), 42(a), 8, 43

23. $f_{X,Y}(x,y) = 12xy(1-x)$ on 0 < x < 1, 0 < y < 1 and 0 otherwise.

(a) So $f_{X,Y}(x,y) = g_1(x)g_2(y)$ for all x, y where

 $g_1(x) = 6x(1-x)$ on 0 < x < 1 and 0 otherwise, $g_2(y) = 2y$ on 0 < y < 1 and 0 otherwise and this is the right way to factorize the constant as each of g_1 and g_2 integrates to 1.

So yes they are independent. (and $f_X(x) = 6x(1-x)$ on 0 < x < 1).

(b)
$$E(X) = \int x f_X(x) dx = \int_0^1 (6x^2 - 6x^3) dx = 2 - 1.5 = 0.5$$
. (Or cite symmetry about $x = 1/2$).

(c) Fron (a), $f_Y(y) = 2y$ on 0 < y < 1. $E(y) = \int_0^1 2y^2 dy = 2/3$.

(d)
$$E(X^2) = \int_0^1 (6x^3 - 6x^4) dx = (6/4) - (6/5) = 6/20$$
. $var(X) = E(X^2) - (E(X)))^2 = 6/20 - 1/4 = 1/20$.

(e)
$$E(Y^2) = \int_0^1 2y^3 dy = 1/2$$
, $var(Y) = E(Y^2) - (E(Y))^2 = (1/2) - (4/9) = 1/18$.

27(b)
$$X \sim U(0,1), Y \sim \mathcal{E}(1), X, Y$$
 independent. $f_{X,Y}(x,y) = \exp(-y)$ on $0 < x < 1, 0 < y < \infty$ and 0 otherwise. $P(W \equiv X/Y \le w) = \int_{x=0}^{1} \int_{y=x/w}^{\infty} \exp(-y) dy dx = \int_{x=0}^{1} \exp(-x/w) dx$

$$= [-w \exp(-x/w)]_{0}^{1} = w(1 - \exp(-1/w)) \quad 0 < w < \infty$$

Note: If we integrate X first, then $x \leq \min(yw, 1)$ which gets messy.

42(a) $f_{X,Y}(x,y) = x \exp(-x(y+1))$ on $0 < x < \infty, 0 < y < \infty$.

$$f_X(x) = \int_{y=0}^{\infty} x e^{-x} e^{-xy} dy = x e^{-x} (1/x) = \exp(-x)$$

$$f_Y(y) = \int_{x=0}^{\infty} x \exp(-x(y+1)) dx = (y+1)^{-2} \int_{w=0}^{\infty} w \exp(-w) dw = 1/(1+y)^2$$

$$f_{Y|X}(y|X=x) = f_{X,Y}(x,y)/f_X(x) = x \exp(-xy) \quad \text{on } 0 < y < \infty$$

$$f_{X|Y}(x|Y=y) = f_{X,Y}(x,y)/f_Y(y) = (y+1)^2 x \exp(-x(y+1)) \quad \text{on } 0 < x < \infty$$

Note, Y|X=x is exponential with rate parameter x: $(Y|X=x) \sim \mathcal{E}(x)$.

Note, X|Y=y is Gamma with shape 2 and rate parameter y+1: $(X|Y=y) \sim G(2,y+1)$.

8.
$$f_{X,Y}(x,y) = c(y^2 - x^2) \exp(-y), -y < x < y, 0 < y < \infty$$

(a)
$$f_Y(y) = c \exp(-y) \int_{-y}^{y} (y^2 - x^2) dx = c \exp(-y)(2y^3 - 2y^3/3) = (4/3)cy^3 \exp(-y).$$

$$1 = \int_0^\infty f_Y(y) dy = (4/3)c\Gamma(4) = (4/3)c(3!) = 8c$$
 So $c = 1/8$

(b) So from (a) $f_Y(y) = (y^3/6) \exp(-y)$ on $0 < y < \infty$ and 0 otherwise. Have symmetry in x so let x > 0

$$f_X(x) = (1/8) \int_x^\infty (y^2 - x^2) \exp(-y) dx$$

$$\int y^2 e^{-y} dy = -y^2 e^{-y} + \int 2y e^{-y} dy = -y^2 e^{-y} - 2y e^{-y} + 2 \int e^{-y} dy = -e^{-y} (y^2 + 2y + 2)$$

$$f_X(x) = (1/8) \exp(-x) (x^2 + 2x + 2 - x^2) = (1/4) (x + 1) \exp(-x)$$

Hence by symmetry, $f_X(x) = (1/4)(1+|x|)\exp(-|x|)$ for all x.

43 We have done all the work in #8, but note X and Y are reversed in this question relative to #8. So now

$$f_{X,Y}(x,y) = (1/8)(x^2 - y^2) \exp(-x), \quad -x < y < x, \quad 0 < x < \infty$$

$$f_X(x) = (1/6)x^3 \exp(-x) \quad \text{from question } \#8$$

$$f_{Y|X}(y|X=x) = f_{X,Y}(x,y)/f_X(x) = (1/8)(x^2 - y^2) \exp(-x)I(-x \le y \le x)/(1/6)x^3 \exp(-x)$$

$$= (3/4)(1/x)(1 - (y/x)^2)I(-x \le y \le x)$$

Note: this is a valid density: it integrates to 1 for every x; also book soln is CDF, but this is sufficient!. Also we do not need to know c = 1/8 – it will cancel out anyhow.