Lecture 9: Discrete random variables Ross 4.1,4.2. (There are no notes for lectures 7,8: 10/8, 10/10)

9.1 Definitions and examples

- (i) **Definition:** A random variable X is a real-valued function on the sample space.
- (ii) Example: the number of heads in 10 tosses of a fair coin.
- (iii) Example: the number of children of blood-type A out of n, from marriages of $AB \times O$ parents.
- (iv) Example: the number of red pea plants out of n, from crosses of $RW \times RW$ pea plants.
- (v) Example: the number of red fish, in sampling k fish without replacement, from a pond in which there are N fish of which n are red.
- (vi) Example: the number of traffic accidents in a large city in a year.

9.2: Discrete Random variables

- (i) **Definition:** A random variable X is discrete if it can take only a discrete set of values.
- (ii) Example (ii) above: X takes a value in $\mathcal{X} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}.$
- (iii) Example (iii) above: X takes a value in $\mathcal{X} = \{0, 1, 2, ..., n\}$.
- (iv) Example (iv) above: ditto.
- (v) Example (v) above: X takes values in $\mathcal{X} = \{\max(0, k+n-N), \dots, \max(k, n)\}.$
- (vi) Example (vi) above: X takes values in $\mathcal{X} = \{0, 1, 2, ...\} = \{0\} \cup \mathcal{Z}_{+}$.

9.3 Probability mass function

(i) **Definition:** The probability mass function (p.m.f.) of a discrete random variable X is the set of probabilities P(X = x) for each of the values $x \in \mathcal{X}$ that X can take.

(ii) Example (ii):
$$P(X = x) = {10 \choose x} (1/2)^{10}$$
 for $x = 0, 1, 2, ... 10$.

(iii) Example (iii):
$$P(X=x) = \binom{n}{x} (1/2)^n$$
 for $x = 0, 1, 2, ...n$.

(iv) Example (iv):
$$P(X = x) = \binom{n}{x} (3/4)^x (1/4)^{n-x}$$
 for $x = 0, 1, 2, ...n$.

$$\text{(v) Example (v): } P(X=x) \ = \ \left(\begin{array}{c} n \\ x \end{array}\right) \left(\begin{array}{c} N-n \\ k-x \end{array}\right) / \left(\begin{array}{c} N \\ k \end{array}\right) \text{ for } x \ = \ \max(0,k+n-N),.....\max(k,n).$$

(vi) Example (vi): $P(X = x) = \exp(-\lambda)\lambda^x/x!$ for x=0,1,2,3,4...

9.4 Properties of probability mass functions

(i) $P(X = x) \geq 0$ for each $x \in \mathcal{X}$

In fact, for discrete random variables, we can require P(X = x) > 0 for each $x \in \mathcal{X}$.

(ii) $\sum_{x} P(X = x) = 1$ where the sum is over all $x \in \mathcal{X}$.

9.5 Names of some standard probability mass functions

- (i) Binomial: Examples (ii), (iii), and (iv) are Binomial random variables, with parameter (1/2), (1/2) and (3/4) respectively.
- (ii) Bernoulli; If n = 1, examples (iii) and (iv) are Bernoulli random variables.
- (iii) Multinomial: If there are more that two types (for example, number of each of types A, B, AB and O in sample size n from a population) then we have a Multinomial random variable.
- (iv) Hypergeometric: In example (v), X is a Hypergeometric random variable.
- (v) Poisson: In example (vi), X is a Poisson random variable, with parameter λ .

Lecture 10: Continuous random variables Ross 5.1

10.1 Definitions and examples

(i) **Definition:** A *continuous* random variable X is one that takes values in $(-\infty, \infty)$. That is, in principle: some values may be impossible.

(ii) Example: A random number between a and b: values in the interval (a, b).

(iii) Example: The waiting time until the bus arrives: values in $(0, \infty)$.

(iv) Example: The height of an individual, relative to the population average: values in $(-\infty, +\infty)$ (in principle).

10.2 The probability density function: definition and basic properties.

(i) **Definition:** The probability density function (p.d.f.) of a continuous random variable X is a non-negative function f defined for all values x in $(-\infty, \infty)$ such that for any subset B for which $X \in B$ is an event

$$P(X \in B) = \int_B f(x) \ dx$$

(ii) In fact, events can be made up of unions and intersections of intervals of the form (a, b]:

$$P(a < X \le b) = \int_a^b f(x) \ dx$$

(iii) Note the value at the boundary does not matter:

$$P(X=a) = \int_a^a f(x) \ dx = 0$$

for any continuous random variable.

(iv) Note: f(x) = 0 is possible for some x-values (see the p.m.f).

For example, if $X \ge 0$ (as in the waiting-time example), f(x) = 0, if x < 0.

(v) X takes some value in $(-\infty, \infty)$ so

$$1 = P(-\infty < X < \infty) = \int_{-\infty}^{\infty} f(x) \ dx$$

10.3 Examples: of the probability density function

(i) In general: any non-negative real-valued function f on the real line auch that $\int_{-\infty}^{\infty} f(x) dx = 1$.

(ii) Example (ii) above: Uniform p.d.f:

$$f(x) = \frac{1}{(b-a)}$$
 for $a \le x \le b$ and $f(x) = 0$ otherwise.

(iii) Example (iii) above: Exponential p.d.f (with rate parameter λ):

$$f(x) = \lambda \exp(-\lambda x)$$
 for $x \ge 0$ and $f(x) = 0$ if $x < 0$.

(iv) Example (iv) above: Normal p.d.f (with parameters μ and σ^2):

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \text{ for } -\infty < x < \infty.$$

2