Lecture 1: Sample spaces and events: Ross section 2.2

1.1 Sample spaces

The sample space Ω is the set of all possible outcomes of an experiment.

One and only one outcome can occur.

1.2 Examples

- (i) Child is boy or girl: $\Omega = \{\text{boy, girl}\}\$
- (ii) Toss of one die: $\Omega = \{1, 2, 3, 4, 5, 6\}$
- (iii) Number of traffic accidents: $\Omega = \{0, 1, 2, 3, 4,\} = \{0\} \cup \mathcal{Z}_+$.
- (iv) Time waiting for the bus: $\Omega = (0, \infty) = \Re_+$, the positive half line.

1.3 Events

Any subset E of Ω is a *event*.

(The book says this: it is OK for countable sample spaces, but an oversimplification for a space like \Re_+ .)

1.4 Combining events

- (i) If E is an event, not-E (the complement of E: written E^c) is an event.
- (ii) If E is an event and F is an event, then "E and/or F" is an event. "E and/or F" is written $E \cup F$.
- (iii) If $E_1, E_2, ...$ are events then $E_1 \cup E_2 \cup E_3...$ is an event. (Countable unions.)
- (iv) If E is an event and F is an event, then "E and F" is an event. "E and F" is written $E \cap F$.
- (v) If E_1, E_2, \ldots are events then $E_1 \cap E_2 \cap E_3 \ldots$ is an event. (Countable intersections.)

1.5 More events:

(i) The empty set Φ is an event: so $\Omega = \Phi^c$ is an event.

If $E \cap F = \Phi$, E and F are disjoint also known as mutually exclusive.

- (ii) E and E^c are disjoint events: $E \cup E^c = \Omega$, $E \cap E^c = \Phi$.
- (iii) Events E_1, E_2, \dots, E_k are mutually exclusive if $E_i \cap E_j = \Phi$ for all pairs (i, j) $(i, j = 1, ..., k, i \neq j)$.
- (iv) Events $E_1, E_2 \dots E_k$ are exhaustive if $E_1 \cup E_2 \cup \dots \cup E_k = \Omega$.
- (v) If Ω is discrete, the elements of Ω are a set of mutually exclusive and exhaustive events.

1.6 A genetic example: The ABO blood types.

We can be blood type A, B, AB or O.

Let our "experiment" be finding the blood types of two children in a family.

Then
$$\Omega = \{(i, j); i, j = A, B, AB, O\}.$$

Let E_1 be the first child is type A.

Let E_2 be the first child is type O.

Let E_3 be the second child is type B.

Let E_4 be at least one child is type A.

Let E_5 be at most one child is type A.

Let E_6 be the two children have the same blood type.

Let E_7 be the two children have different blood types.

Which pairs of events are *complements*?

Which pairs of events are *disjoint*?

Which pair of events is mutually exclusive and exhaustive?

What is the intersection of E_4 and E_5 ?

Lecture 2: Probabilities: Ross sections 2.3, 2.4

2.1 Probability axioms

For each event E we assume we can assign a number P(E) which satisfies the following three axioms:

- (i) $P(E) \ge 0$ for every event E.
- (ii) $P(\Omega) = 1$
- (iii) If $E_1, E_2, ...$ are mutually exclusive $P(E_1 \cup E_2 \cup E_3 \cup ...) = P(E_1) + P(E_2) + P(E_3) + ...$

Note: for a countable sample space, each outcome (element of Ω) has a probability, and each even is a union of outcomes, with probability the sum of the probabilities of the outcomes.

2.2 Probability interpretation as a limiting frequency

A useful interpretation of P(E) is that it is the proportion of times an outcome in E occurs in a large number of repetitions of the same experiment with outcomes in the sample space Ω .

Example: Sampling an individual from a very large population.

$$\Omega = \{A, B, AB, O\}.$$

P(A) can be interpreted as the proportion of A blood-type individuals in the population. If we repeat the sampling of an individual again, and again, the proption of times we observe the individual to have blood type A is P(A).

For the USA population, roughly, P(A) = 0.36, P(B) = 0.20, P(AB) = 0.08, and P(O) = 0.36.

 $P(\text{antigen A on red blood cells}) = P(\{A\} \cup \{AB\}) = P(A) + P(AB) = 0.44 \text{ for this example.}$

2.3 Basic probability formulae

(i) $\Omega = E \cup E^c$, $E \cap E^c = \Phi$, so $P(E^c) + P(E) = P(\Omega) = 1$, or $P(E^c) = 1 - P(E)$.

This also shows $P(E) \leq 1$, since all probabilities are non-negative.

(ii) $E \cup F = E \cup (E^c \cap F)$, so $P(E \cup F) = P(E) + P(E^c \cap F)$. So $P(E \cup F) + P(E \cap F) = P(E) + P(E^c \cap F) + P(E \cap F) = P(E) + P(F)$, or $P(E \cup F) = P(E) + P(F) - P(E \cap F)$.

2.4 Two important probability formulae

(i) Law of total probability

Suppose $E_1, E_2,$, form a partition of Ω .

That is, $E_1, E_2, ...$ are mutually exclusive and exhaustive.

That is, $E_i \cap E_j = \Phi$ (disjoint), and $\Omega = E_1 \cup E_2 \cup ...$

Then for any event $F, F = \bigcup_i (F \cap E_i), P(F) = \sum_i P(F \cap E_i).$

Special case: if E_i is ith outcome in a countable Ω , $F \cap E_i = E_i$ or $F \cap E_i = \Phi$, and $P(F) = \sum_{i \in F} P(E_i)$.

(ii) The inclusion and exclusion formula

$$\begin{split} P(D \cup E) &= P(D) + P(E) - P(D \cap E). \\ P(C \cup D \cup E) &= P(C) + P(D) + P(E) - P(C \cap D) - P(D \cap E) - P(C \cap E) + P(C \cap D \cap E). \\ P(E_1 \cup E_2 \cup ... \cup E_k) &= P(E_1) + P(E_2) + ... P(E_k) \\ &- P(E_1 \cap E_2) - \text{all the other 2-way} \\ &+ P(E_1 \cap E_2 \cap E_3) + \text{all the other 3-way} \\ &- P(E_1 \cap E_2 \cap E_3 \cap E_4) - \text{all the other 4-way} \\ &..... \pm P(E_1 \cap E_2 \cap \cap E_k). \end{split}$$

Lecture 3: Permutations and combinations: Ross sections 1.1-1.4

3.1 Basic principle of counting

If an experiment has k steps, and if earlier choices do NOT limit later ones, then if step-1 can be done in n_1 ways, step-2 in n_2 ways, ... step-k in n_k ways,

then there are $n_1 \times n_2 \times ... \times n_k$ possible outcomes for (step-1, ..., step-k).

Corollary: There are 2^k subsets of a set size k.

Proof: Each element i, i = 1, ..., k can be chosen, or not: $n_i = 2, i = 1, ..., k$.

So total possible is $2 \times 2 \times \times 2 = 2^k$.

Note: for proper (not Ω), non-empty (not Φ) subsets, there are $2^k - 2$.

3.2 Permutations and combinations

- (i) The number of ways of ordering n distinct objects is n(n-1)(n-2)....3.2.1 = n! (n-factorial).
- (ii) The number of ways of choosing k distinct objects, in order, from n is n(n-1)...(n-k+1) = n!/(n-k)!.
- (iii) If we do not care about the order in which the k objects are selected, there are k! selections that give the same *combination*.

That is there are n!/((n-k)!k!) distinct *combinations*: this is often written ${}_{n}C_{k}$ or $\binom{n}{k}$.

(iv) Ross Section 1.4 Example 4b, P.7

(Note this is an example where is is easient to consider the complement of the event.)

(v) Ross Section 1.4, P.8, Equation (4.1)

$$\left(\begin{array}{c} n \\ k \end{array}\right) = \left(\begin{array}{c} n-1 \\ k-1 \end{array}\right) + \left(\begin{array}{c} n-1 \\ k \end{array}\right)$$

Consider the number of choices that do and do not contain the particular object "1".

3.3 Multinomial combinations

Number of ways of arranging n_1 objects type-1, n_2 objects type-2, ... n_k objects type-k,

where
$$n_1 + n_2 + ... + n_k = n$$
:

Choose the n_1 positions for type 1: $\binom{n}{n_1} = n!/(n_1!(n-n_1)!)$.

Now out of the remaining $(n - n_1)$ positions choose n_2 for type-2:

number of ways =
$$\binom{n-n_1}{n_2} = (n-n_1)!/(n_2!(n-n_1-n_2)!)$$
. etc. ...

Total number of ways is

$$\frac{n!}{n_1!(n-n_1)!} \frac{(n-n_1)!}{n_2!(n-n_1-n_2)!} \frac{(n-n_1-n_2)!}{n_3!(n-n_1-n_2-n_3)!} \dots \frac{(n-n_1-n_2-\ldots-n_{k-1})!}{n_k!0!} = \frac{n!}{n_1!} \frac{n!}{n_2!\ldots n_k!}$$

Example: Twelve students go to donate blood: 5 are type A, 2 are type B, one is AB, and 4 are type O. How many different orderings of the types of blood in the 12 blood donation tubes are there?

Answer: $12!/(5! \times 2! \times 1! \times 4!) = (12.11.10.9.8.7.6)/(2.4.3.2) = 12.11.10.9.7 = 914,760.$