1. Permutations and combinations

There are $n!=\prod_{i=1}^{n} i=1.2 .3 .4 \ldots n$ permutations of n objects.
There are $\binom{n}{k}=n!/(k!(n-k)!)$ different combinations of k objects chosen from n.
2. Joint and conditional probabilities

If C and D are any events: $P(C \bigcup D)=P(C)+P(D)-P(C \cap D)$.
The conditional probability of C given D is $P(C \mid D)=P(C \cap D) / P(D)$.
C and D are independent if $P(C \bigcap D)=P(C) \cdot P(D)$.
3. Laws and theorems

Suppose E_{1}, \ldots, E_{k} is a partition of Ω. That is $E_{i} \bigcap E_{j}$ is empty for all i, j, and $E_{1} \cup E_{2} \cup \ldots \bigcup E_{k}=\Omega$.
The law of total probability states that: $P(D)=\sum_{j=1}^{k} P\left(D \cap E_{j}\right)=\sum_{j=1}^{k} P\left(D \mid E_{j}\right) P\left(E_{j}\right)$
Bayes' Theorem states that: $P\left(E_{i} \mid D\right)=P\left(D \mid E_{i}\right) P\left(E_{i}\right) / P(D)$

THREE QUESTIONS WILL FOLLOW HERE

