1. Permutations and combinations

There are $n! = \prod_{i=1}^{n} i = 1.2.3.4...n$ permutations of n objects. There are $\binom{n}{k} = n!/(k!(n-k)!)$ different combinations of k objects chosen from n.

2. Joint and conditional probabilities

If C and D are any events: $P(C \cup D) = P(C) + P(D) - P(C \cap D)$. The conditional probability of C given D is $P(C \mid D) = P(C \cap D) / P(D)$. C and D are independent if $P(C \cap D) = P(C) \cdot P(D)$.

3. Laws and theorems

Suppose E_1, \ldots, E_k is a partition of Ω . That is $E_i \cap E_j$ is empty for all i, j, and $E_1 \cup E_2 \cup \ldots \cup E_k = \Omega$. The law of total probability states that: $P(D) = \sum_{j=1}^k P(D \cap E_j) = \sum_{j=1}^k P(D \mid E_j) P(E_j)$ Bayes' Theorem states that: $P(E_i \mid D) = P(D \mid E_i) P(E_i)/P(D)$

THREE QUESTIONS WILL FOLLOW HERE