Chapter 8: NPMLE, Censoring, and EM

- **8.1** Estimating an arbitrary *F*
- (i) $X_1, ..., X_n$ i.i.d $\sim F$.
- (ii) Problem: no dominating measure.

(One) solution: assume a dominating measure which is counting measure on the discrete values in $\{x_1, \ldots, x_n\}$. Problem: dominating measure changes with $X^{(n)}$.

(iii) Then

$$L_{X^{(n)}}(F) = \prod_{1}^{n} p_{i} = \prod_{1}^{k} p_{j}^{n_{j}}$$

where $p_i = P_F(X = x_i)$, $n_j = \#x_i$ equal to x_j , and (wlog) x_1, \ldots, x_k are distinct.

- (iv) $\ell(F) = \sum_{1}^{k-1} n_j \log p_j + n_k \log(1 \sum_{1}^{k-1} p_j)$, gives $\widehat{p_j} = n_j/n$.
- (v) That is, $\widehat{F} = F_n$, the empirical cdf. Despite (ii), F_n has "good" properties.
- (vi) Glivenko-Cantelli: $\sup_x |F_n(x) F(x)| \rightarrow_{a.s.} 0$.
- (vii) Donsker's Thm: $U_n \sim U(0,1)$ with edf G_n . $X_j \equiv F^{-1}(U_j) \sim F$. Then

 $\sqrt{n}(G_n(u)-u)$ and $\sqrt{(G_n^{-1}(u)-u)}$ each converges to Brownian Bridge process, B. And $\sqrt{n}(F_n-F)$ converges to the process B(F).

(i.e. have usual \sqrt{n} convergence, like parametric MLEs)

- 8.2 Right-censoring and the Kaplan-Meier estimator
- (i) (X_i, U_i) i.i.d. $X_i \sim f, U_i \sim G$.

We observe only $Y_i = \min(X_i, U_i)$ and $\delta_i = I(X_i \leq U_i)$.

- (ii) We want to estimate F: G normally not of interest. If we could observe all the X_i , F_n would be NPMLE of F.
- (iii) For simplicity, assume Y_i distinct, and (notational convenience) $y_1 < y_2 < \ldots < y_n < y_+$. We construct an NPMLE putting mass only on $\{y_1, \ldots, y_n, y_+\}$.

(iv)
$$\ell(F) = \sum_{i=1}^{n} (\delta_i \log f(y_i) + (1 - \delta_i) \log(1 - F(y_i)))$$

- (v) Let $k_1 < \ldots < k_{m+1}$ be indices of uncensored $(\delta_i = 1)$, obsv., with $y_{k_{m+1}} = y_+$ if $\delta_n = 0$, and $y_{k_{m+1}} = y_n$ if $\delta_n = 1$.
- (vi) Let $p_{k_j} = f(y_i)$, and $n_j = \#x_i$ equal to y_{k_j} . Now do EM, with complete-data X_1, \ldots, X_n :

$$\ell_c(F) = \sum_{1}^{n} \log f(x_i) = \sum_{1}^{m+1} n_j \log p_{k_j}$$

Let $e_j = \mathrm{E}(n_j | Y^{(n)}, \delta^{(n)}) = \sum_{1}^{n} P(X_i = y_{k_j} | \delta_i) \quad \tilde{p}_{k_j} = e_j/n$

- (vii) Now with $F(t) = \sum_{j:y_{k_j} \le t} p_{k_j}$, $F(t) = E(F_n(t)|Y^{(n)}, \delta^{(n)})$
- (viii) But now we find that a stationary point of EM is $\widehat{p_{k_i}}/\sum_{j=i}^{m+1}\widehat{p_{k_j}}=1/(n-k_i+1)$ $i=1,\ldots,m$.
- (ix) Then $\widehat{F}(t) = \sum_{i:y_{k_i} \leq t} p_{k_i}$ is NPMLE. This is Kaplan-Meier estimate, although not in usual form.
- (x) Consider

$$\prod_{i:y_{k_i} \le t} \left(1 - \frac{1}{n - k_i + 1} \right) = \dots = 1 - \widehat{F}(t)$$

 $n - k_i + 1$ i "population at risk" just before failure at y_{k_i} .

- 8.3 Current status data
- (i) As above, failure times X_i , but now we observe only times U_i , and $\delta_i = I(X_i \leq U_i)$ (i alive/dead at U_i).
- (ii) Again, (X_i, U_i) i.i.d, with X_i indep U_i , $X_i \sim F$, $U_i \sim G$. $L(F) = \sum_{i=1}^{n} (\delta_i \log F(u_i) + (1 \delta_i) \log(1 F(u_i))$
- (iii) Wlog, $u_1 < u_2 < \ldots < u_n < u_+ \equiv u_{n+1}$. We will put probability mass on (a subset of) u_1, \ldots, u_n and maybe on u_+ . Then need to find $p_k = P_F(X = u_k), k = 1, \ldots, n$.
- (iv) Suppose at EM step m we have estimate $p_i^{(m)}$, $i = 1, \ldots, n+1$, giving probs $Q_{ik}^{(m)} = P^{(m)}(X_i = u_k | \delta_i)$.
- (v) Now $\ell_c(F) = \Sigma_1^n \log f(X_i)$ so

$$E_{m}(\ell_{c}(F)|U^{(n)}, \delta^{(n)}) = \sum_{i=1}^{n} E_{m}(\log f(X_{i}) \mid U^{(n)} = u, \delta^{(n)})$$

$$= \sum_{i=1}^{n} \sum_{k=1}^{n+1} \log p_{k} P^{(m)}(X_{i} = u_{k} | \delta_{i}) = \sum_{k=1}^{n+1} \left(\log p_{k} \left(\sum_{i=1}^{n} Q_{ik}^{(m)}\right)\right)$$

- (vi) Maximizing (M-step): $p_k^{(m+1)} = n^{-1} \sum_{i=1}^n Q_{ik}^{(m)}$; but $Q_{ik}^{(m)} = \delta_i p_k^{(m)} / F^{(m)}(u_i)$ if $u_i \ge u_k$, and $(1 \delta_i) p_k^{(m)} / (1 F^{(m)}(u_i))$ if $u_i < u_k$.
- (viii) Thus $p_k^{(m+1)} = p_k^{(m)} S_{ik}^{(m)}$ where

$$S_{ik}^{(m)} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{\delta_i I(u_i \ge u_k)}{F^{(m)}(u_i)} + \frac{(1 - \delta_i) I(u_i < u_k)}{1 - F^{(m)}(u_i)} \right)$$

(ix) Either $p_k^{(m)} \to \widehat{p_k} > 0$; then $\widehat{S_{ik}} = 1$, or $p_k^{(m)} \to 0$, and then $\widehat{S_{ik}} \le 1$.

- 8.4 The Cusum Diagram
- (i) Define points in \Re^2 , $P_0 = (0,0)$, $P_k = (k, \sum_{1}^{k} \delta_i)$.
- (ii) $F(u_i) = P(\text{failed by } u_i) \approx (1/k) \sum_1^k \delta_i = \text{slope of } (P_0, P_k).$ BUT F must be non-decreasing. So we take largest convex fn $\leq \{P_k\}$ and let $\widehat{F(u_i)}$ be slope of this function at i.
- (iii) E.g. $\delta = (1, 0, 0, 1, 0, 1)$, then $F(\widehat{u}_1) = F(\widehat{u}_2) = F(\widehat{u}_3) = 1/3$, $F(\widehat{u}_4) = F(\widehat{u}_5) = 1/2$, $F(\widehat{u}_6) = 1$.
- (iv) Note, change in slope at $k \Rightarrow \delta_{k+1} = 1$, so we have prob mass at failure observation times.
- (v) Suppose slope changes are at $k_1 1, k_2 1, ...$, with $1 \le k_1 < k_2 < ... < k_+ \le n$, so $p_{k_i} > 0$.
- (vi) If $k_j \leq l \leq k_{j+1} 1$, $\widehat{F(u_l)} = \Delta_j / (k_{j+1} k_j)$, where $\Delta_j = \sum_{i=k_j}^{k_{j+1}-1} \delta_i$.
- (vii) If $k_j > m$, $\sum_{i=k_j}^{k_{j+1}-1} \delta_i / \widehat{F(u_i)} = (k_{j+1} k_j)$. If $k_{j+1} \leq m$, $\sum_{i=k_j}^{k_{j+1}-1} (1 - \delta_i) / (1 - \widehat{F(u_i)}) = (k_{j+1} - k_j)$.
- (viii) If $k_{j+1} = m$, $S_m^* = n^{-1}(k_1 + (k_2 k_1) + \ldots + (n k_+)) = 1$. If $k_j < m < k_{j+1}$,

$$S_{m}^{*} = n^{-1}(k_{1} + \ldots + (k_{j} - k_{j-1}) + G_{j,m} + (k_{j+2} - k_{j+1}) + \ldots + (n - k_{+}))$$

$$= n^{-1}(n + G_{j,m} - (k_{j+1} - k_{j}) \text{ where}$$

$$G_{j,m} = \frac{k_{j+1} - k_{j}}{k_{j+1} - k_{j} - \Delta_{j}} (m - k_{j} + 1 - D_{m}) + \frac{k_{j+1} - k_{j}}{\Delta_{j}} (\Delta_{j} - D_{m}) \leq k_{j+1} - k_{j}$$

where $D_m = \sum_{i=k_i}^m \delta_i$. So $S_m^* \leq 1$.

QED!!!