Chapter 7: EM algorithm in exponential families: JAW 4.30-32

7.1 (i) The EM Algorithm finds MLE’s in problems with
latent variables (sometimes called “missing data”): things
you wish you could observe, but cannot.
(ii) Recall homework example (with added parameter o?):
Y; ii.d. from mixture ;N(—0,0%) + 1N (0,0?)
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fr(y:0,0%) = S(2m0%) "> exp(—y?/(20%)) exp(~67/(20%))

(exp(—yb/0”) + exp(yf/o?))
(,(0, 02) = const — (n/2) 10g(02) — (Z 5/;2)/(202) — n92/(202)
+3 log((exp(—Y;0/0?) 4 exp(Y;0/c?))
(iv) What is the sufficient statistic?
How would we estimate (0, 0?) ?

(v) Now suppose each Y; caries a “flag” Z; = —1 or 1 as
obsn i comes from N(—0,0°) or N(0,0%). Let X; = (Y;, Z;).
1
Fxly.z:6,0%) = (2m0’) 2exp(—(y —62)°/20")
gc,n(‘gv 02) — Zlog f(}/;a Zi; 97 U2>

—  const — (n/2)log(c?) — X(Y; — 07;)* /20°

= const —(n/2)log(c?) — (20%) " H(Z Y - 20X Y, Z; + 6°n)

(vi) What now is sufficient statistic, if X; were observed?
How now could you estimate (0,0%) ?
The Z; are “latent variables”; X; are “complete data”

(vii) E(¢.,|Y) requires only
¢((yi —0)/0) — ¢((yi +0)/0)

B = (= 6))0) 1 bl + 8)/0)

1



7.2 Defining the EM algorithm

(i) Data random variables Y, with probability measure
Qy, with § € © c ®*. Suppose Y has density f; w.r.t.
some o-finite measure ; (usually Lebegue measure (pdf)
or counting measure (pmf)).

(ii) ¢(#) = logL(f) = log fy(y), for observed data Y = y.
Suppose maximization of /(f) is messy/impossible; k > 1
but not huge.

(iii) Suppose we augment the random variables to
“complete data” X: Y = Y (X). Suppose X has density
gg(x). Then

L) = foly) = L:y(x):yge(x)d“(x>
and (.(0) = loggs(x)

is known as the “complete-data likelihood”.
(iv) Let Q(0;0*) = Eg(L.(0) | Y(X)=y). Then

90(X) = ho(X|Y =y)fo(y)
l(0; X) = loghy(X|Y =y) + £(0;y)
QO;0") = H(6;0") + £(0) Yy
where H (0 = Eg-(loghg(X|Y =vy) | Y(X) =1y)

L 0%)

L 60%)

(v) EM algorithm is:

E-step: at current estimate 6* compute Q(0;0").

M-step: Maximize Q(0;0*) w.r.t. 6 to obtain
new estimate 6.

Set #* = # and repeat ad nauseam.



7.3 Why does EM work?

(i) Recall (see Kullback-Leibler info) that for any densities
pand g of r.v. Z, E (logp(Z)) = rlog(p(z))q(2)du(z)
is maximized w.r.t p by p=q. (K(¢;p) = E,log(¢/p) > 0.)
(ii) Hence H(0;60%) < H(0*,6%) for all 6, 0*.
(iii) Now with new/old estimates 6, *
Q0 07) — Q6% 0")
— (H(6,0") — H(0";0%)) by 7.2(iv)
> H(0":6") — H(#;6") by M-step
> 0 by (ii). Also
> 0, unless h;(X|Y) = hp-(X]Y)

(o) — €6")

(o) — £07)

(iv) Thus each step of EM cannot decrease ¢(f) and usually
increases /(6).

(v) If the MLE 0 is the unique stationary point of /(6) in
the interior of the space, then 6 — 6

(vi) In practice, EM is very robust, but can be very slow,
especially in final stages: cgce is first-order.

(vii) Caution: we do NOT “use expectations to impute
the missing data”

We compute the expected complete-data log-likelihood.
This normally involves using conditional expectations to
impute the complete-data sufficient statistics. This is
NOT the same thing — see hwk. And it could be more
complicated than this — although not if we have chosen
sensible “complete-data”.



7.4 A multinomial example

(i) Bernstein (1928) used population data to validate the
hypothesis that human ABO blood tyoes are determined
by 3 alleles, A, B and O at a single genetic locus, rather
than being 2 independent factors A /not-A, B/not-B.

(ii) Suppose that the population frequencies of the A, B
and O are p, gand r (p+q+r=1);
we want to estimate (p,q, 7).

(iii) We assume that the types of the two alleles carried
by an individual are independent (Hardy-Weinberg
Equil: 1908), and that individuals are independent
(“unrelated”).

(iv) ABO blood types are determined as follows:

blood type genotype freq.|type geno. freq.
A AA P A AO  2pr
B BB q° B BO 2r
AB AB 2pq O 00 2

(v) Y ~ My(n, (p* + 2pr, ¢ + 2qr, 2pq, r?))
X ~ Mg(n, (p?, 2pr, ¢, 2qr, 2pq, %))

(vi) ¢(p,q,r) easy to evaluate but hard to max.
((p,q,7) = const + ylog(p* + 2pr) + yplog(q® + 2qr)
+yaplog(2pg) + yo log(r?)

(v) L.(p,q,r) is easy to maximize:

le(p,q,m) = const + zaalog(p?) + w40 log(2pr) + wpplog(q’)
+130l0g(2qr) + waplog(2pq) + Too log(r?)

= const + (2x44 + x40 + xap)logp +

(2xpp + o + xap)logq + (2x00 + Ta0 + xp0) logT
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: ) 2
(vi) E-step: 27y = Ep ¢, (XaalY =y) = 25 -ya = S 5ya ete.

(vii) M-step: p = (2n) Y22% 4 + 2% + YaB),
¢ = (2n)(20pp +¥po +yan), T=1-P—q.
(viii) This method know to geneticists in 1950s: “gene-
counting”. (EM algorithm dates to 1977: Dempster,Laird

& Rubin)

7.5 A mixture example (see prev hwk)
(i) Y; iid, with pdf f(y;0,4) = 0fi(y;¢) + (1 = 0)f2(y; ¥)
(if) €(0,v) = 5ilog(0fi(yi ) + (1= 0) fa(yis )

l(0,v) = vi(Z;log0 + (1 — Zi)log(1 — 0) + Z;log fi(yi;¥) + (1 —
Zi)log foyi; b))

(iv) £, is linear in Z;, so E-step requires only

o o 0 f1(yi; )
0; = E(Z|Y) 0f1(ys; ) + (1 — 0) foly;; 1)

(v) M-step: § = ¥;6;/n and 1) maximizes

;i 0;1log filyi; ¥) + (1 — 6;) log fa(yi: )

(vi) Example: f;(y;v) = ;" exp(—yi/1;)

i 0;10g filyii ) = log i %i0; — i iy

1= S0/ (Si6i), Y2 = Si(1— 8)yi/ il — 6y).

(vii) Be careful about identifiability — exchanging the
probs and labels on components gives same mixture: e.g.

fix ¢ < ho.




7.6 Other types of example

(i) Missing data — actual

Caution: we do NOT “use expectations to impute the
missing data”.

(ii) Variance component models (see hwk 9)

(a) Y = AZ + e, e ~ N,(0,7%), Z ~ N,(0,0°G), A is n xr
matrix.

Y ~ N,(0,0°AGA’ + 7%1)

(b) X = (Y, 2):

le(0®, 7)) = —(n/2)log(r?) — (r/2)log(0”)
—(27%) Ny — A2)'(y — Az) — (201 12G 2

(c) 02 =r'E(z'G 'zly), 2 =n"'E((Y — AZ) (Y — AZ)|Y),

but E(='G~'2[y) # B(z|y)G~'E(=]y).

(d) Note X ~ N,;,(0,V), so we have usual formulae
E(Z|Y) = szVyjY, var(Z|Y) =V,, — szVy;lVyz.

(e) Also, if E(W) =0,

E(W'BW) = E(x; ; W,W,B;;) = % jvar(W);; B;; = tr(var(W)DB).
(iii) Censored data, age-of-onset-data, competing risks
models, etc.

(iv) Hidden states, latent variables:
Models in Genetics, Biology, Climate modelling,
Environmental modelling.

(v) General auxiliary variables: the latent variables do
not have to mean anything — they are simply a tool, s.t.
that the complete-data log-likelihood is easy.



7.7 Likelihood in Exponential families

(i) See Chapter 2, for definitions, the natural sufficient
statistics 7T},
the natural parameter space and parametrization ;.

(iii) Moment formulae. see 2.2 (vii)

Bt (X)) =~
Cov(t;(X), (X)) = _081;;5575?)

(iv) Likelihood equation for exponential family — see 4.6

4
87’("7'

The natural sufficient statistics 7; are set equal to their

= n(n! ﬁ;;tj(Xi) — E(t;(X)))

expectations nr;.
(v) The information results (see 4.6)
I(r) = J(r) = var(Th,...,T})
I(1) = (var(Ty,...,T})) " where 7; = E(t;(X))
(T4, ...,T}) achieves (multiparameter) CRLB for (7, ..., 7).

(v) Suppose complete-data X has exp.fam. form: for n-
sample T;(X) =27, t,;(X;)

log ga(X) = loge(6) + X m(0)T,(X) + log w(X)

j:

Q(0;0") = logc() +§:1 7 (0)Eg«(T;(X)|Y) + Eg«(log w(X)|Y).



7.8 EM for exponential families

(i) In natural parametrization 7;:
k
Qm ") = loge(m) + ¥ mjEe(T;(X)[Y)
j:
oQ

on, E(T;(X)|Y) + L log c()

o
— E(T,(X)Y) - E(T;(X))
Thus EM iteratively fits unconditioned to conditioned
expectations of 7;. At MLE E.«(T;(X)]Y) = E+(T;(X)).

(ii) Recall () = logg.(X)—logh,(X|Y)

w(X) exp(x; ;i (X))
Jy(x)=y w(X) exp(zj W]tj(X))dX
= (m; Y)w(X) exp(%: miti(X))

but  he(X|Y) =

so  L(m) = loge(m) —logc(m;Y)

(iii) Hence, differentiating this:
of

o = —ET) +E«(T|Y) At MLE: Ei(T}) = Eo(Tj|Y)
T

(iv) Differentiating again:
0l
_87rj87rl
If Y determines X, var(T(X)|Y) = 0, and then observed
information is var(7) as for any exp fam.

If Y tells nothing about X, var(T(X)|Y) = var(T(X)), and

observed information is 0.
“Information lost” due to observing Y not X is
var(T'(X)|Y).

- COV<Tj7T5> - COV((TJWTZ)‘Y)



