
Chapter 7: EM algorithm in exponential families: JAW 4.30-32

7.1 (i) The EM Algorithm finds MLE’s in problems with

latent variables (sometimes called “missing data”): things

you wish you could observe, but cannot.

(ii) Recall homework example (with added parameter σ2):

Yi i.i.d. from mixture 1
2N(−θ, σ2) + 1

2N(θ, σ2)

fY (y; θ, σ2) =
1

2
(2πσ2)−

1
2 exp(−y2/(2σ2)) exp(−θ2/(2σ2))

(exp(−yθ/σ2) + exp(yθ/σ2))

`n(θ, σ
2) = const− (n/2) log(σ2)− (

∑
i
Y 2
i )/(2σ2)− nθ2/(2σ2)

+
∑
i

log((exp(−Yiθ/σ2) + exp(Yiθ/σ
2))

(iv) What is the sufficient statistic?

How would we estimate (θ, σ2) ?

(v) Now suppose each Yi caries a “flag” Zi = −1 or 1 as

obsn i comes from N(−θ, σ2) or N(θ, σ2). Let Xi = (Yi, Zi).

fX(y, z; θ, σ2) =
1

2
(2πσ2)−

1
2 exp(−(y − θz)2/2σ2)

`c,n(θ, σ
2) =

∑
i

log f (Yi, Zi; θ, σ
2)

= const− (n/2) log(σ2)− ∑
i
(Yi − θZi)

2/2σ2

= const −(n/2) log(σ2)− (2σ2)−1(
∑
Y 2
i − 2θ

∑
YiZi + θ2n)

(vi) What now is sufficient statistic, if Xi were observed?

How now could you estimate (θ, σ2) ?

The Zi are “latent variables”; Xi are “complete data”

(vii) E(`c,n|Y ) requires only

E(Zi|Yi) =
φ((yi − θ)/σ)− φ((yi + θ)/σ)

φ((yi − θ)/σ) + φ((yi + θ)/σ)
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7.2 Defining the EM algorithm

(i) Data random variables Y , with probability measure

Qθ, with θ ∈ Θ ⊂ <k. Suppose Y has density fθ w.r.t.

some σ-finite measure µ (usually Lebegue measure (pdf)

or counting measure (pmf)).

(ii) `(θ) = logL(θ) = log fθ(y), for observed data Y = y.

Suppose maximization of `(θ) is messy/impossible; k > 1

but not huge.

(iii) Suppose we augment the random variables to

“complete data” X: Y = Y (X). Suppose X has density

gθ(x). Then

L(θ) = fθ(y) =
∫
x:y(x)=y

gθ(x)dµ(x)

and `c(θ) = log gθ(x)

is known as the “complete-data likelihood”.

(iv) Let Q(θ; θ∗) = Eθ∗(`c(θ) | Y (X) = y). Then

gθ(X) = hθ(X|Y = y)fθ(y)

`c(θ;X) = log hθ(X|Y = y) + `(θ; y)

Q(θ; θ∗) = H(θ; θ∗) + `(θ) ∀ y
where H(θ; θ∗) = Eθ∗(log hθ(X|Y = y) | Y (X) = y)

(v) EM algorithm is:

E-step: at current estimate θ∗ compute Q(θ; θ∗).

M-step: Maximize Q(θ; θ∗) w.r.t. θ to obtain

new estimate θ̃.

Set θ∗ = θ̃ and repeat ad nauseam.
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7.3 Why does EM work?

(i) Recall (see Kullback-Leibler info) that for any densities

p and q of r.v. Z, Eq(log p(Z)) =
∫
log(p(z))q(z)dµ(z)

is maximized w.r.t p by p = q. (K(q; p) = Eq log(q/p) ≥ 0.)

(ii) Hence H(θ; θ∗) ≤ H(θ∗, θ∗) for all θ, θ∗.

(iii) Now with new/old estimates θ̃, θ∗

`(θ̃)− `(θ∗) = Q(θ̃; θ∗)−Q(θ∗; θ∗)
− (H(θ̃; θ∗)−H(θ∗; θ∗)) by 7.2(iv)

≥ H(θ∗; θ∗)−H(θ̃; θ∗) by M-step

≥ 0 by (ii). Also

`(θ̃)− `(θ∗) > 0, unless hθ̃(X|Y ) = hθ∗(X|Y )

(iv) Thus each step of EM cannot decrease `(θ) and usually

increases `(θ).

(v) If the MLE θ̂ is the unique stationary point of `(θ) in

the interior of the space, then θ̃ → θ̂

(vi) In practice, EM is very robust, but can be very slow,

especially in final stages: cgce is first-order.

(vii) Caution: we do NOT “use expectations to impute

the missing data”

We compute the expected complete-data log-likelihood.

This normally involves using conditional expectations to

impute the complete-data sufficient statistics. This is

NOT the same thing – see hwk. And it could be more

complicated than this – although not if we have chosen

sensible “complete-data”.
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7.4 A multinomial example

(i) Bernstein (1928) used population data to validate the

hypothesis that human ABO blood tyoes are determined

by 3 alleles, A, B and O at a single genetic locus, rather

than being 2 independent factors A/not-A, B/not-B.

(ii) Suppose that the population frequencies of the A, B

and O are p, q and r (p + q + r = 1);

we want to estimate (p, q, r).

(iii) We assume that the types of the two alleles carried

by an individual are independent (Hardy-Weinberg

Equil: 1908), and that individuals are independent

(“unrelated”).

(iv) ABO blood types are determined as follows:
blood type genotype freq. type geno. freq.

A AA p2 A AO 2pr

B BB q2 B BO 2qr

AB AB 2pq O OO r2

(v) Y ∼M4(n, (p
2 + 2pr, q2 + 2qr, 2pq, r2))

X ∼M6(n, (p
2, 2pr, q2, 2qr, 2pq, r2))

(vi) `(p, q, r) easy to evaluate but hard to max.

`(p, q, r) = const + yA log(p2 + 2pr) + yB log(q2 + 2qr)

+yAB log(2pq) + yO log(r2)

(v) `c(p, q, r) is easy to maximize:

`c(p, q, r) = const + xAA log(p2) + xAO log(2pr) + xBB log(q2)

+xBO log(2qr) + xAB log(2pq) + xOO log(r2)

= const + (2xAA + xAO + xAB) log p +

(2xBB + xBO + xAB) log q + (2xOO + xAO + xBO) log r

4



(vi) E-step: x∗AA = Ep,q,r(XAA|Y = y) = p2

p2+2pr
yA = p

p+2ryA etc.

(vii) M-step: p̃ = (2n)−1(2x∗AA + x∗AO + yAB),

q̃ = (2n)−1(2x∗BB + x∗BO + yAB), r̃ = 1− p̃− q̃.

(viii) This method know to geneticists in 1950s: “gene-

counting”. (EM algorithm dates to 1977: Dempster,Laird

& Rubin)

7.5 A mixture example (see prev hwk)

(i) Yi i.i.d, with pdf f (y; θ, ψ) = θf1(y;ψ) + (1− θ)f2(y;ψ)

(ii) `(θ, ψ) =
∑
i log(θf1(yi;ψ) + (1− θ)f2(yi;ψ))

(iii) Let Zi = I(Yi ∼ f1). P (Zi = 1) = θ,

`c(θ, ψ) =
∑
i(Zi log θ + (1 − Zi) log(1 − θ) + Zi log f1(yi;ψ) + (1 −

Zi) log f2(yi;ψ))

(iv) `c is linear in Zi, so E-step requires only

δi = E(Zi|Y ) =
θf1(yi;ψ)

θf1(yi;ψ) + (1− θ)f2(yi;ψ)

(v) M-step: θ̃ =
∑
i δi/n and ψ̃ maximizes∑

i δi log f1(yi;ψ) + (1− δi) log f2(yi;ψ))

(vi) Example: fj(yi;ψ) = ψ−1
j exp(−yi/ψj)∑

i δi log f1(yi;ψ) = logψ1
∑
i δi −

∑
i δiyi

ψ̃1 =
∑
i δiyi/(

∑
i δi), ψ̃2 =

∑
i(1− δi)yi/

∑
i(1− δi).

(vii) Be careful about identifiability – exchanging the

probs and labels on components gives same mixture: e.g.

fix ψ1 < ψ2.
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7.6 Other types of example

(i) Missing data – actual

Caution: we do NOT “use expectations to impute the

missing data”.

(ii) Variance component models (see hwk 9)

(a) Y = AZ + e, e ∼ Nn(0, τ
2), Z ∼ Nr(0, σ

2G), A is n × r

matrix.

Y ∼ Nn(0, σ
2AGA′ + τ 2I)

(b) X = (Y, Z):

`c(σ
2, τ 2) = −(n/2) log(τ 2)− (r/2) log(σ2)

−(2τ 2)−1(y − Az)′(y − Az)− (2σ2)−1z′G−1z

(c) σ̃2 = r−1E(z′G−1z|y), τ̃ 2 = n−1E((Y − AZ)′(Y − AZ)|Y ),

but E(z′G−1z|y) 6= E(z|y)′G−1E(z|y).
(d) Note X ∼ Nn+r(0, V ), so we have usual formulae

E(Z|Y ) = VzyV
−1
yy Y , var(Z|Y ) = Vzz − VzyV

−1
yy Vyz.

(e) Also, if E(W ) = 0,

E(W ′BW ) = E(
∑
i,jWiWjBij) =

∑
i,j var(W )ijBij = tr(var(W )B).

(iii) Censored data, age-of-onset-data, competing risks

models, etc.

(iv) Hidden states, latent variables:

Models in Genetics, Biology, Climate modelling,

Environmental modelling.

(v) General auxiliary variables: the latent variables do

not have to mean anything – they are simply a tool, s.t.

that the complete-data log-likelihood is easy.
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7.7 Likelihood in Exponential families

(i) See Chapter 2, for definitions, the natural sufficient

statistics Tj,

the natural parameter space and parametrization πj.

(iii) Moment formulae. see 2.2 (vii)

E(tj(X)) = −∂ log c(π)

∂πj

Cov(tj(X), tj(X)) = −∂
2 log c(π)

∂πj∂πl

(iv) Likelihood equation for exponential family – see 4.6

∂`

∂πj
= n(n−1

n∑
1
tj(Xi)− E(tj(X)))

The natural sufficient statistics Tj are set equal to their

expectations nτj.

(v) The information results (see 4.6)

I(π) = J(π) = var(T1, ..., Tk)

I(τ ) = (var(T1, ..., Tk))
−1 where τj = E(tj(X))

(T1, ..., Tk) achieves (multiparameter) CRLB for (τ1, ..., τk).

(v) Suppose complete-data X has exp.fam. form: for n-

sample Tj(X) =
∑n
i=1 tj(Xi)

log gθ(X) = log c(θ) +
k∑
j=1

πj(θ)Tj(X) + logw(X)

Q(θ; θ∗) = log c(θ) +
k∑
j=1

πj(θ)Eθ∗(Tj(X)|Y ) + Eθ∗(logw(X)|Y ).
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7.8 EM for exponential families

(i) In natural parametrization πj:

Q(π;π∗) = log c(π) +
k∑
j=1

πjEπ∗(Tj(X)|Y )

∂Q

∂πj
= Eπ∗(Tj(X)|Y ) +

∂

∂πj
log c(π)

= Eπ∗(Tj(X)|Y )− Eπ(Tj(X))

Thus EM iteratively fits unconditioned to conditioned

expectations of Tj. At MLE Eπ∗(Tj(X)|Y ) = Eπ∗(Tj(X)).

(ii) Recall
`(π) = log gπ(X)− log hπ(X|Y )

but hπ(X|Y ) =
w(X) exp(

∑
j πjtj(X))∫

y(X)=y w(X) exp(
∑
j πjtj(X))dX

= c∗(π;Y )w(X) exp(
∑
j
πjtj(X))

so `(π) = log c(π)− log c∗(π;Y )

(iii) Hence, differentiating this:

∂`

∂πj
= −Eπ(Tj) + Eπ(Tj|Y ) At MLE : Eπ(Tj) = Eπ(Tj|Y )

(iv) Differentiating again:

− ∂2`

∂πj∂πl
= Cov(Tj, Tl) − Cov((Tj, Tl)|Y )

If Y determines X, var(T (X)|Y ) = 0, and then observed

information is var(T ) as for any exp fam.

If Y tells nothing about X, var(T (X)|Y ) = var(T (X)), and

observed information is 0.

“Information lost” due to observing Y not X is

var(T (X)|Y ).
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