
Chapter 6: Likelihood-based testing: JAW Ch.4 ctd, Sev 4.3, 4.4

6.1 The test statistics for simple null Pθ0.

(i) Definitions: (JAW 4.11)

(a) 2 log(λ̃n) ≡ 2(`n(θ̃n)− `n(θ0))

(b) Wn ≡ n(θ̃n − θ0)
t ̂I(θ0)(θ̃n − θ0) where ̂I(θ0) is any of the

three consistent estimators of 5.5.

(c) Rn ≡ Zt
nI
−1(θ0)Zn where Zn = n−

1
2 5 `(θ0;X

(n)).

(ii) Dsn under simple null. (JAW 4.9)

If θ = θ0, each converges in dsn to χ2
k.

(iii) For Wn: From 5.4 (ii) and 5.5.1

n
1
2(θ̃n − θ0)

t
(
n−1Jn(θ̃n)

)
n

1
2(θ̃n − θ0) →d DtI(θ0)D ∼ χ2

k

n
1
2(θ̃n − θ0)

tI(θ̃n)n
1
2(θ̃n − θ0) →d DtI(θ0)D ∼ χ2

k

(iv) For 2 log(λ̃n): On Gn, 5`n(θ̃n) = 0 so

`n(θ0) = `n(θ̃n)−
1

2
(θ̃n − θ0)

t(Jn(θ
∗
n))(θ̃n − θ0)

2 log(λ̃n) = 2(`n(θ̃n)− `n(θ0))

= 2
1

2
n

1
2(θ̃n − θ0)

t
(
n−1Jn(θ

∗
n)

)
n

1
2(θ̃n − θ0)

→d DtI(θ0)D ∼ χ2
k

where D ∼ Nk(0, I
−1(θ0))

(v) For Rn, result follows trivially, since we already know

Zn →d Nk(0, I(θ0)).
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6.2 Distributions under fixed alternatives

(i) Fixed alternatives: θ is true; θ0 hypothesized.

(ii) n−12 log(λ̃n) = 2n−1(`n(θ̃n)− `n(θ0))

= 2n−1(`n(θ)− `n(θ0)) + 2n−1(`n(θ̃n)− `n(θ))

→p 2Eθ(log
fθ(X)

fθ0(X)
) + 0.χ2

k = 2K(Pθ, Pθ0)

by WLLN and 6.1 (iv), (and > 0 if Pθ 6= Pθ0).

(iii) θ̃n →p θ, Î(θ̃n) →p I(θ) so, by cts mapping thm,

n−1Wn →p (θ − θ0)
tI(θ)(θ − θ0) > 0 if I(θ) pos.def.

(iv) A6: Eθ(5`(θ0;Xi)) <∞
Then n−

1
2Zn = n−1 5 `(θ0;X

(n)) →p Eθ(5`(θ0;Xi)) so

n−1Rn →p Eθ(5`(θ0;Xi))
tI−1(θ0)Eθ(5`(θ0;Xi))

(v) Assuming, in the case of Rn that Eθ(5`(θ0;Xi)) 6= 0,

then n−1× each statistic →p to something strictly positive

if θ 6= θ0.

Each test has χ2
k dsn if θ = θ0.

Hence if θ 6= θ0, each test rejects H0 : θ = θ0 with prob. → 1

as n→∞.

That is, each test is consistent.

(vi) To obtain non-degenerate limit dsn, we need

alternatives θn → θ0 as n → ∞. In fact, local alternatives

θn = θ0 + sn−
1
2 .
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6.3 Distributions under alternatives θn = θ0 + sn−
1
2

(i) First generalization of 5.4 Theorem for Pθn

(a) n
1
2(θ̃n − θn) →d D ∼ Nk(0, I

−1(θ0))

(b) Zn(θn) ≡ n−
1
2 5 `n(θn;X

(n)) →d Z ∼ Nk(0, I(θ0))

(ii) Second generalization of 5.4 Thm for Pθn

(a) n
1
2(θ̃n − θ0) →d Nk(s, I

−1(θ0))

(b) Zn(θ0) ≡ n−
1
2 5 `n(θ0;X

(n)) →d Nk(I(θ0)s, I(θ0))

(iii) Using LeCam’s 3 rd Lemma, can prove (ii) and hence

deduce (i) — see JAW notes 3.35,4.13. Alternatively,

Ibramigov & Has’minskii (1981), can prove (i) and hence

deduce (ii). This proof of (i) is as for Thm of 5.4,

EXCEPT expectations are taken at θn ≈ θ0, and limits

have to work as θn → θ0. WE ASSUME THIS IS OK!!

(iv) So ASSUME (i): now we show (ii).

n
1
2(θ̃n − θ0) = n

1
2(θ̃n − θn) + n

1
2(θn − θ0)

→d D + s ∼ Nk(s, I
−1(θ0))

Zn(θ0) = Zn(θn) + (−n−1Jn(θ
∗
n))n

1
2(θ0 − θn)

→d Z + I(θ0)s ∼ Nk(I(θ0)s, I(θ0))

(v) Under prev. assumptions, and with θn = θ0 + sn−
1
2

2 log λ̃n →d (D + s)tI(θ0)(D + s) see 6.1

Wn →d (D + s)tI(θ0)(D + s)

Rn →d (Z + I(θ0)s)
tI−1(θ0)(Z + I(θ0)s)

=d (D + s)tI(θ0)I
−1(θ0)I(θ0)(D + s)

and (D + s)tI(θ0)(D + s) ∼ χ2
k(δ) where δ = stI(θ0)s.
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6.4 Defns and dsns: composite null hypothesis (JAW 4.14)

(i) Partition θ = (θ1, θ2) of dim m and k −m.

Partition I(θ), D, Zn, Z etc. similarly.

Let H0 : θ ∈ Θ0 ⊂ Θ where Θ0 ≡ {θ; θ1 = θ1,0}. H1; θ ∈ Θ \ Θ0

Let θ̃n and θ̃n
0

= (θ1,0, ˜θ2,n
0
) be consistent roots of the

likelihood eqn under H1 and H0.

(ii) (I−1)11 = (I11·2)
−1; I11·2 = I11 − I12I

−1
22 I21 and

(I−1)12 = −I−1
11 I12(I

−1)22 with I symm., and 1 ↔ 2 eqns also.

(iii) 2 log λ̃n ≡ 2 log(L(Θ;X(n))/L(Θ0;X
(n))) = 2(`n(θ̃n)− `n(θ̃n

0
))

Wn ≡ n(θ̃n1 − θ1,0)
tÎ11·2(θ̃n1 − θ1,0)

Rn ≡ Zt
n(θ̃n

0
)I−1(θ̃n

0
)Zn(θ̃n

0
).

(iv) Suppose θ = θ0 = (θ0
1, θ

0
2) where θ0

1 = θ1,0 so H0 is true.

Now n
1
2(θ̃n−θ0) →d D ∼ Nk(0, I

−1(θ0)) so n
1
2( ˜θ1,n−θ1,0) →d D1 ∼

Nm(0, (I−1)11) ≡ Nm(0, I−1
11·2)

(v) Zn(θ̃n
0
) = (Zn,1(θ̃n

0
), Zn,2(θ̃n

0
))t. By defn, (θ̃n

0 − θ0) =

= (0, ˜θ2,n
0−θ0

2), and Zn,2(θ̃n
0
) = n−

1
2 ∂
∂θ2
`(θ1,0, θ2)|θ2= ˜θ2,n

0 = 0. Also,

θ̃n
0

is estimated with θ1 = θ0
1 fixed and true, so n

1
2( ˜θ2,n

0 −
θ0

2) →d N(0, I−1
22 ) equiv I−1

22 Z2. (NOT I22 = (I−1)22).

(vi)Then, with |θ∗n − θ0| < |θ̃n
0 − θ0|

Zn,1(θ̃n
0
) = n−

1
2
∂`n
∂θ1

|
θ̃n

0

= Zn,1(θ0) + (−n−1J12(θ
∗
n))n

1
2( ˜θ2,n

0 − θ0
2)

→d Z1 − I12(θ0)I
−1
22 (θ0)Z2 ≡ Z∗ ≡ Z1·2

where Z = (Z1, Z2)
t = I(θ0)D ∼ Nk(0, I(θ0)).

(vii) Now var(Z1−I12I
−1
22 Z2) = I11−I12I

−1
22 I21 = I11·2, so overall

Zn(θ̃n
0
) →d (Z∗, 0)t ∼ (Nm(0, I11.2), 0)t.
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6.5 Dsns of text statistics, under null and local

alternatives

(i) Theorem 1: If assumptions holds as previously, and

θ0 ∈ Θ0 (H0 true) then Tn →d D
t
1I11·2D1 ∼ χ2

k−(k−m) ≡ χ2
m,

where Tn is any of 2 log λ̃n, Wn, or Rn.

(ii) Wn →d D
t
1I11·2D1 ∼ χ2

m by (iv) above

Rn →d (Z∗, 0)I−1(θ0)(Z
∗, 0)t = (Z∗)tI−1

11·2(θ0)Z
∗ ∼ χ2

m by (vi),

(vii) above.

2 log λ̃n = 2(`n(θ̃n)− `n(θ̃n
0
))

= 2(`n(θ̃n)− `n(θ0))− 2(`n(θ̃n
0
)− `n(θ0))

→d ZtI−1Z − Zt
2I
−1
22 Z2 by (v) above.

(iii) Now recall Z∗ = Z1 − I12I
−1
22 Z2, so

ZtI−1Z = (Z∗ + I12I
−1
22 Z2, Z2)

tI−1(Z∗ + I12I
−1
22 Z2, Z2)

Quadr term in Z∗ is (Z∗)t(I−1)11Z
∗ ≡ (Z∗)tI−1

11·2Z
∗

Linear term in Z∗ is 2Zt
2(I

−1
22 I21(I

−1)11 + (I−1)21)Z
∗ ≡ 0

Quadr term in Z2 is Zt
2HZ2 with H = ... = ... = I−1

22 .

So, putting it together 2 log λ̃n →d (Z∗)tI−1
11·2Z

∗

(We will do this arithmetic – but no time to latex it here.)

(iv) Define Z∗ = Z1 − I12I
−1
22 Z2 ≡ Z1·2, then

(a) D = (I(θ0))
−1Z = (I−1

11·2Z1·2, I
−1
22·1Z2·1)

t

(b) Cov(Z1·2, Z2) = Cov(Z2·1, Z1) = 0

(v) Theorem 2 (not proved):

Under all previous assumptions and conditions, and θn =

θ0 + sn−
1
2 , θ0 ∈ Θ0, then, under Pθn, 2 log λ̃n,Wn, Rn →d

(D1 + s1)
tI11·2(D1 + s1) ∼ χ2

m(δ) where δ = st1I11·2s1.
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6.6 Practicalities: a useful table

2 log λ̃n Rn Wn

(a) Simple H0; θ = θ0

Max. (unconstr.) Yes No Yes

Eval. `n(θ) Yes No No

Eval. 5`n(θ) No Yes No

Eval. I(θ) No Yes (Yes∗)

(b) Composite H0: θ1 = θ1,0

Max. (unconstr.) Yes No Yes

Max. (constrained) Yes Yes No

Eval. `n(θ) Yes No No

Eval. 5`n(θ) No Yes No

Eval. I(θ) No Yes (Yes∗∗)

∗: or some variance estimate for MLE.

∗∗: Need to evaluate I11.2, or some consistent estimator.

Note about dimensions and units:

(a) Only matrices of appropriate dimensions can be

multiplied, for example I12I
−1
22 (I−1)21I11·2I12.....

(b) Vectors such as Zn, θ̃n etc are column vectors,

transposes t should be interpreted appropriately (and may

be wrong): for example (Z1, Z2)
t denotes the k × 1 column

vector of Z1 piled above Z2.

(c) Let units of θ be u, so also θ̃n, θ̃n
0
, D.

Units of var(θ̃n) would be u2, so of I(θ) is u−2.

`n (and any standardized test statistic) should be u0.

Score = ∂`n/∂θ, has dim u−1, so also Z.

(d) Equations such as (I−1)11 = (I11− I12I
−1
22 I21)

−1 must have

matching units – here I-inverse units.
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6.7 Reparametrization

(i) A hypothesis µ = λ could be parametrized as ψ = (µ−
λ) = 0, ψ = (µ/λ − 1) = 0, ψ = (λ/µ − 1) = 0, ψ = log(µ/λ) = 0

etc.

Does it matter which ψ we choose?

Let q(θ) be a 1-1 transf <k → <k.

(ii) 2 log λ̃n ≡ 2(`n(θ̃n)− `n(θ̃n
0
)) = 2(`n(q̃n)− `n(q̃n

0)).

Maximized lhds unchanged by reparametrization – so

2 log λ̃n is invariant.

(iii) Rn ≡ Zt
n(θ̃n

0
)I−1(θ̃n

0
)Zn(θ̃n

0
) is invariant, since

Zn(q) = (5q(θ))Zn(θ) and I(q) = (5q(θ))I(θ)(5q(θ))
t, so

Rn(q) = (Zn(θ))
t(5q(θ))

t((5q(θ))
t)−1 I−1(θ)(5q(θ))

−1(5q(θ))Zn(θ)

≡ Rn(θ). ((5q(θ))ij =
dθj
dqi

.)

(iv) Note the Rao statistic may be computed in any

parametrization, giving the same statistic, but it is

simplest to compute for q for which H0 : q1 = q1,0 since

then Zn,2(q̃n
0) ≡ 0.

(v) In θ parametrization: Wn ≡ n(θ̃n1− θ1,0)
tÎ11·2(θ̃n1− θ1,0) is

quadratic form in (θ̃n1 − θ1,0).

In q(θ) parametrization, Wn is quadratic form in (q̃n −
q(θ1,0)): which will not in general have corresponding

0 components. Wn is NOT invariant under non-linear

transformations of the parameters.
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