Chapter 6: Likelihood-based testing: JAW Ch.4 ctd, Sev 4.3, 4.4 6.1 The test statistics for simple null P_{θ_0} .

- (i) Definitions: (JAW 4.11)
- (a) $2\log(\tilde{\lambda_n}) \equiv 2(\ell_n(\tilde{\theta_n}) \ell_n(\theta_0))$
- (b) $W_n \equiv n(\widetilde{\theta_n} \theta_0)^t I(\widehat{\theta_0})(\widetilde{\theta_n} \theta_0)$ where $I(\widehat{\theta_0})$ is any of the three consistent estimators of 5.5.
- (c) $R_n \equiv Z_n^t I^{-1}(\theta_0) Z_n$ where $Z_n = n^{-\frac{1}{2}} \nabla \ell(\theta_0; X^{(n)})$.
- (ii) Dsn under simple null. (JAW 4.9) If $\theta = \theta_0$, each converges in dsn to χ_k^2 .
- (iii) For W_n : From 5.4 (ii) and 5.5.1

$$n^{\frac{1}{2}}(\tilde{\theta_{n}} - \theta_{0})^{t} \left(n^{-1}J_{n}(\tilde{\theta_{n}})\right) n^{\frac{1}{2}}(\tilde{\theta_{n}} - \theta_{0}) \to_{d} D^{t}I(\theta_{0})D \sim \chi_{k}^{2}$$

$$n^{\frac{1}{2}}(\tilde{\theta_{n}} - \theta_{0})^{t}I(\tilde{\theta_{n}})n^{\frac{1}{2}}(\tilde{\theta_{n}} - \theta_{0}) \to_{d} D^{t}I(\theta_{0})D \sim \chi_{k}^{2}$$

(iv) For $2\log(\tilde{\lambda_n})$: On G_n , $\nabla \ell_n(\tilde{\theta_n}) = 0$ so

$$\ell_n(\theta_0) = \ell_n(\tilde{\theta_n}) - \frac{1}{2}(\tilde{\theta_n} - \theta_0)^t (J_n(\theta_n^*))(\tilde{\theta_n} - \theta_0)$$

$$2\log(\tilde{\lambda_n}) = 2(\ell_n(\tilde{\theta_n}) - \ell_n(\theta_0))$$

$$= 2\frac{1}{2}n^{\frac{1}{2}}(\tilde{\theta_n} - \theta_0)^t (n^{-1}J_n(\theta_n^*)) n^{\frac{1}{2}}(\tilde{\theta_n} - \theta_0)$$

$$\to_d D^t I(\theta_0) D \sim \chi_k^2$$

where $D \sim N_k(0, I^{-1}(\theta_0))$

(v) For R_n , result follows trivially, since we already know $Z_n \to_d N_k(0, I(\theta_0))$.

- 6.2 Distributions under fixed alternatives
- (i) Fixed alternatives: θ is true; θ_0 hypothesized.

(ii)
$$n^{-1}2\log(\tilde{\lambda_n}) = 2n^{-1}(\ell_n(\tilde{\theta_n}) - \ell_n(\theta_0))$$

 $= 2n^{-1}(\ell_n(\theta) - \ell_n(\theta_0)) + 2n^{-1}(\ell_n(\tilde{\theta_n}) - \ell_n(\theta))$
 $\to_p 2E_{\theta}(\log \frac{f_{\theta}(X)}{f_{\theta_0}(X)}) + 0.\chi_k^2 = 2K(P_{\theta}, P_{\theta_0})$

by WLLN and 6.1 (iv), (and > 0 if $P_{\theta} \neq P_{\theta_0}$).

- (iii) $\tilde{\theta_n} \to_p \theta$, $\hat{I}(\tilde{\theta_n}) \to_p I(\theta)$ so, by cts mapping thm, $n^{-1}W_n \to_p (\theta \theta_0)^t I(\theta)(\theta \theta_0) > 0$ if $I(\theta)$ pos.def.
- (iv) A6: $E_{\theta}(\nabla \ell(\theta_0; X_i)) < \infty$ Then $n^{-\frac{1}{2}} Z_n = n^{-1} \nabla \ell(\theta_0; X^{(n)}) \rightarrow_p E_{\theta}(\nabla \ell(\theta_0; X_i))$ so $n^{-1} R_n \rightarrow_p E_{\theta}(\nabla \ell(\theta_0; X_i))^t I^{-1}(\theta_0) E_{\theta}(\nabla \ell(\theta_0; X_i))$
- (v) Assuming, in the case of R_n that $E_{\theta}(\nabla \ell(\theta_0; X_i)) \neq 0$, then $n^{-1} \times$ each statistic \rightarrow_p to something strictly positive if $\theta \neq \theta_0$.

Each test has χ_k^2 dsn if $\theta = \theta_0$.

Hence if $\theta \neq \theta_0$, each test rejects $H_0: \theta = \theta_0$ with prob. $\to 1$ as $n \to \infty$.

That is, each test is consistent.

(vi) To obtain non-degenerate limit dsn, we need alternatives $\theta_n \to \theta_0$ as $n \to \infty$. In fact, local alternatives $\theta_n = \theta_0 + sn^{-\frac{1}{2}}$.

- **6.3 Distributions under alternatives** $\theta_n = \theta_0 + sn^{-\frac{1}{2}}$
- (i) First generalization of 5.4 Theorem for P_{θ_n}

(a)
$$n^{\frac{1}{2}}(\tilde{\theta_n} - \theta_n) \to_d D \sim N_k(0, I^{-1}(\theta_0))$$

(b) $Z_n(\theta_n) \equiv n^{-\frac{1}{2}} \nabla \ell_n(\theta_n; X^{(n)}) \to_d Z \sim N_k(0, I(\theta_0))$

(ii) Second generalization of 5.4 Thm for P_{θ_n}

(a)
$$n^{\frac{1}{2}}(\tilde{\theta_n} - \theta_0) \to_d N_k(s, I^{-1}(\theta_0))$$

(b) $Z_n(\theta_0) \equiv n^{-\frac{1}{2}} \nabla \ell_n(\theta_0; X^{(n)}) \to_d N_k(I(\theta_0)s, I(\theta_0))$

- (iii) Using LeCam's 3 rd Lemma, can prove (ii) and hence deduce (i) see JAW notes 3.35,4.13. Alternatively, Ibramigov & Has'minskii (1981), can prove (i) and hence deduce (ii). This proof of (i) is as for Thm of 5.4, EXCEPT expectations are taken at $\theta_n \approx \theta_0$, and limits have to work as $\theta_n \to \theta_0$. WE ASSUME THIS IS OK!!
- (iv) So ASSUME (i): now we show (ii).

$$n^{\frac{1}{2}}(\tilde{\theta_{n}} - \theta_{0}) = n^{\frac{1}{2}}(\tilde{\theta_{n}} - \theta_{n}) + n^{\frac{1}{2}}(\theta_{n} - \theta_{0})$$

$$\to_{d} D + s \sim N_{k}(s, I^{-1}(\theta_{0}))$$

$$Z_{n}(\theta_{0}) = Z_{n}(\theta_{n}) + (-n^{-1}J_{n}(\theta_{n}^{*}))n^{\frac{1}{2}}(\theta_{0} - \theta_{n})$$

$$\to_{d} Z + I(\theta_{0})s \sim N_{k}(I(\theta_{0})s, I(\theta_{0}))$$

(v) Under prev. assumptions, and with $\theta_n = \theta_0 + sn^{-\frac{1}{2}}$

$$2\log \tilde{\lambda_n} \to_d (D+s)^t I(\theta_0)(D+s) \text{ see } 6.1$$

$$W_n \to_d (D+s)^t I(\theta_0)(D+s)$$

$$R_n \to_d (Z+I(\theta_0)s)^t I^{-1}(\theta_0)(Z+I(\theta_0)s)$$

$$=_d (D+s)^t I(\theta_0) I^{-1}(\theta_0) I(\theta_0)(D+s)$$

and $(D+s)^t I(\theta_0)(D+s) \sim \chi_k^2(\delta)$ where $\delta = s^t I(\theta_0) s$.

- 6.4 Defns and dsns: composite null hypothesis (JAW 4.14)
- (i) Partition $\theta = (\theta_1, \theta_2)$ of dim m and k m.

Partition $I(\theta)$, D, Z_n , Z etc. similarly.

Let $H_0: \theta \in \Theta_0 \subset \Theta$ where $\Theta_0 \equiv \{\theta; \theta_1 = \theta_{1,0}\}$. $H_1; \theta \in \Theta \setminus \Theta_0$ Let $\tilde{\theta_n}$ and $\tilde{\theta_n}^0 = (\theta_{1,0}, \tilde{\theta_{2,n}^0})$ be consistent roots of the likelihood eqn under H_1 and H_0 .

- (ii) $(I^{-1})_{11} = (I_{11\cdot 2})^{-1}$; $I_{11\cdot 2} = I_{11} I_{12}I_{22}^{-1}I_{21}$ and $(I^{-1})_{12} = -I_{11}^{-1}I_{12}(I^{-1})_{22}$ with I symm., and $1 \leftrightarrow 2$ eqns also.
- (iii) $2 \log \tilde{\lambda_n} \equiv 2 \log(L(\Theta; X^{(n)})/L(\Theta_0; X^{(n)})) = 2(\ell_n(\tilde{\theta_n}) \ell_n(\tilde{\theta_n}^0))$ $W_n \equiv n(\tilde{\theta_{n1}} - \theta_{1,0})^t \hat{I}_{11\cdot 2}(\tilde{\theta_{n1}} - \theta_{1,0})$ $R_n \equiv Z_n^t(\tilde{\theta_n}^0) I^{-1}(\tilde{\theta_n}^0) Z_n(\tilde{\theta_n}^0).$
- (iv) Suppose $\theta = \theta_0 = (\theta_1^0, \theta_2^0)$ where $\theta_1^0 = \theta_{1,0}$ so H_0 is true. Now $n^{\frac{1}{2}}(\tilde{\theta_n} \theta_0) \to_d D \sim N_k(0, I^{-1}(\theta_0))$ so $n^{\frac{1}{2}}(\tilde{\theta_{1,n}} \theta_{1,0}) \to_d D_1 \sim N_m(0, (I^{-1})_{11}) \equiv N_m(0, I_{11\cdot 2}^{-1})$
- (v) $Z_n(\tilde{\theta_n}^0) = (Z_{n,1}(\tilde{\theta_n}^0), Z_{n,2}(\tilde{\theta_n}^0))^t$. By defn, $(\tilde{\theta_n}^0 \theta_0) = (0, \tilde{\theta_{2,n}}^0 \theta_2^0)$, and $Z_{n,2}(\tilde{\theta_n}^0) = n^{-\frac{1}{2}} \frac{\partial}{\partial \theta_2} \ell(\theta_{1,0}, \theta_2)|_{\theta_2 = \tilde{\theta_{2,n}}^0} = 0$. Also, $\tilde{\theta_n}^0$ is estimated with $\theta_1 = \theta_1^0$ fixed and true, so $n^{\frac{1}{2}}(\tilde{\theta_{2,n}}^0 \theta_2^0) \to_d N(0, I_{22}^{-1})$ equiv $I_{22}^{-1} Z_2$. (NOT $I^{22} = (I^{-1})_{22}$).
- (vi)Then, with $|\theta_n^* \theta_0| < |\tilde{\theta_n}^0 \theta_0|$

$$Z_{n,1}(\tilde{\theta_n}^0) = n^{-\frac{1}{2}} \frac{\partial \ell_n}{\partial \theta_1} |_{\tilde{\theta_n}^0}$$

$$= Z_{n,1}(\theta_0) + (-n^{-1} J_{12}(\theta_n^*)) n^{\frac{1}{2}} (\tilde{\theta_{2,n}^0} - \theta_2^0)$$

$$\to_d Z_1 - I_{12}(\theta_0) I_{22}^{-1}(\theta_0) Z_2 \equiv Z^* \equiv Z_{1\cdot 2}$$

where $Z = (Z_1, Z_2)^t = I(\theta_0)D \sim N_k(0, I(\theta_0))$.

(vii) Now $var(Z_1 - I_{12}I_{22}^{-1}Z_2) = I_{11} - I_{12}I_{22}^{-1}I_{21} = I_{11\cdot 2}$, so overall $Z_n(\tilde{\theta_n}^0) \to_d (Z^*, 0)^t \sim (N_m(0, I_{11\cdot 2}), 0)^t$.

- 6.5 Dsns of text statistics, under null and local alternatives
- (i) Theorem 1: If assumptions holds as previously, and $\theta_0 \in \Theta_0$ (H_0 true) then $T_n \to_d D_1^t I_{11\cdot 2} D_1 \sim \chi^2_{k-(k-m)} \equiv \chi^2_m$, where T_n is any of $2\log \tilde{\lambda_n}$, W_n , or R_n .
- (ii) $W_n \to_d D_1^t I_{11\cdot 2} D_1 \sim \chi_m^2$ by (iv) above $R_n \to_d (Z^*, 0) I^{-1}(\theta_0) (Z^*, 0)^t = (Z^*)^t I_{11\cdot 2}^{-1}(\theta_0) Z^* \sim \chi_m^2$ by (vi), (vii) above.

$$2\log \tilde{\lambda_n} = 2(\ell_n(\tilde{\theta_n}) - \ell_n(\tilde{\theta_n}^0))$$

$$= 2(\ell_n(\tilde{\theta_n}) - \ell_n(\theta_0)) - 2(\ell_n(\tilde{\theta_n}^0) - \ell_n(\theta_0))$$

$$\rightarrow_d Z^t I^{-1} Z - Z_2^t I_{22}^{-1} Z_2 \quad \text{by (v) above.}$$

(iii) Now recall $Z^* = Z_1 - I_{12}I_{22}^{-1}Z_2$, so

$$Z^{t}I^{-1}Z = (Z^{*} + I_{12}I_{22}^{-1}Z_{2}, Z_{2})^{t}I^{-1}(Z^{*} + I_{12}I_{22}^{-1}Z_{2}, Z_{2})$$

Quadr term in Z^* is $(Z^*)^t(I^{-1})_{11}Z^* \equiv (Z^*)^tI_{11\cdot 2}^{-1}Z^*$ Linear term in Z^* is $2Z_2^t(I_{22}^{-1}I_{21}(I^{-1})_{11} + (I^{-1})_{21})Z^* \equiv 0$ Quadr term in Z_2 is $Z_2^tHZ_2$ with $H = ... = ... = I_{22}^{-1}$. So, putting it together $2\log \tilde{\lambda_n} \to_d (Z^*)^tI_{11\cdot 2}^{-1}Z^*$

(We will do this arithmetic – but no time to latex it here.)

- (iv) Define $Z^* = Z_1 I_{12}I_{22}^{-1}Z_2 \equiv Z_{1\cdot 2}$, then
- (a) $D = (I(\theta_0))^{-1}Z = (I_{11\cdot 2}^{-1}Z_{1\cdot 2}, I_{22\cdot 1}^{-1}Z_{2\cdot 1})^t$
- **(b)** $Cov(Z_{1\cdot 2}, Z_2) = Cov(Z_{2\cdot 1}, Z_1) = 0$
- (v) Theorem 2 (not proved):

Under all previous assumptions and conditions, and $\theta_n = \theta_0 + sn^{-\frac{1}{2}}, \ \theta_0 \in \Theta_0$, then, under P_{θ_n} , $2\log \tilde{\lambda_n}, W_n, R_n \to_d (D_1 + s_1)^t I_{11\cdot 2}(D_1 + s_1) \sim \chi_m^2(\delta)$ where $\delta = s_1^t I_{11\cdot 2} s_1$.

6.6 Practicalities: a useful table

	$2\log \tilde{\lambda_n}$	R_n	W_n
(a) Simple H_0 ; $\theta = \theta_0$			
Max. (unconstr.)	Yes	\mathbf{No}	\mathbf{Yes}
Eval. $\ell_n(\theta)$	Yes	No	\mathbf{No}
Eval. $\nabla \ell_n(\theta)$	\mathbf{No}	Yes	\mathbf{No}
Eval. $I(\theta)$	No	Yes	(Yes^*)
(b) Composite H_0 : $\theta_1 = \theta_{1,0}$			
Max. (unconstr.)	Yes	\mathbf{No}	\mathbf{Yes}
Max. (constrained)	Yes	Yes	\mathbf{No}
Eval. $\ell_n(\theta)$	Yes	No	\mathbf{No}
Eval. $\nabla \ell_n(\theta)$	\mathbf{No}	Yes	No
Eval. $I(\theta)$	No	Yes	(Yes^{**})

*: or some variance estimate for MLE.

**: Need to evaluate $I_{11.2}$, or some consistent estimator.

Note about dimensions and units:

- (a) Only matrices of appropriate dimensions can be multiplied, for example $I_{12}I_{22}^{-1}(I^{-1})_{21}I_{11\cdot 2}I_{12}...$
- (b) Vectors such as Z_n , $\tilde{\theta_n}$ etc are column vectors, transposes t should be interpreted appropriately (and may be wrong): for example $(Z_1, Z_2)^t$ denotes the $k \times 1$ column vector of Z_1 piled above Z_2 .
- (c) Let units of θ be u, so also $\tilde{\theta_n}$, $\tilde{\theta_n}^0$, D. Units of $var(\tilde{\theta_n})$ would be u^2 , so of $I(\theta)$ is u^{-2} . ℓ_n (and any standardized test statistic) should be u^0 . Score $= \partial \ell_n / \partial \theta$, has dim u^{-1} , so also Z.
- (d) Equations such as $(I^{-1})_{11} = (I_{11} I_{12}I_{22}^{-1}I_{21})^{-1}$ must have matching units here *I*-inverse units.

6.7 Reparametrization

(i) A hypothesis $\mu = \lambda$ could be parametrized as $\psi = (\mu - \lambda) = 0$, $\psi = (\mu/\lambda - 1) = 0$, $\psi = (\lambda/\mu - 1) = 0$, $\psi = \log(\mu/\lambda) = 0$ etc.

Does it matter which ψ we choose?

Let $q(\theta)$ be a 1-1 transf $\Re^k \to \Re^k$.

(ii)
$$2\log \tilde{\lambda_n} \equiv 2(\ell_n(\tilde{\theta_n}) - \ell_n(\tilde{\theta_n}^0)) = 2(\ell_n(\tilde{q_n}) - \ell_n(\tilde{q_n}^0)).$$

Maximized lhds unchanged by reparametrization – so $2 \log \tilde{\lambda_n}$ is invariant.

(iii)
$$R_n \equiv Z_n^t(\tilde{\theta_n}^0)I^{-1}(\tilde{\theta_n}^0)Z_n(\tilde{\theta_n}^0)$$
 is invariant, since $Z_n(q) = (\nabla_q(\theta))Z_n(\theta)$ and $I(q) = (\nabla_q(\theta))I(\theta)(\nabla_q(\theta))^t$, so $R_n(q) = (Z_n(\theta))^t(\nabla_q(\theta))^t((\nabla_q(\theta))^t)^{-1} I^{-1}(\theta)(\nabla_q(\theta))^{-1}(\nabla_q(\theta))Z_n(\theta) \equiv R_n(\theta)$. $((\nabla_q(\theta))_{ij} = \frac{d\theta_j}{da_i}$.)

- (iv) Note the Rao statistic may be computed in any parametrization, giving the same statistic, but it is simplest to compute for q for which $H_0: q_1 = q_{1,0}$ since then $Z_{n,2}(\tilde{q_n}^0) \equiv 0$.
- (v) In θ parametrization: $W_n \equiv n(\tilde{\theta}_{n1} \theta_{1,0})^t \hat{I}_{11\cdot 2}(\tilde{\theta}_{n1} \theta_{1,0})$ is quadratic form in $(\tilde{\theta}_{n1} \theta_{1,0})$.

In $q(\theta)$ parametrization, W_n is quadratic form in $(\tilde{q_n} - q(\theta_{1,0}))$: which will not in general have corresponding 0 components. W_n is NOT invariant under non-linear transformations of the parameters.