Chapter 6: Likelihood-based testing: JAW Ch.4 ctd, Sev 4.3, 4.4
6.1 The test statistics for simple null Fy,.

(i) Definitions: (JAW 4.11)

(a) 2log(\n) = 2(0u(6n) — £u(60))

(b) W, = n(6, — 0)'1(6y)(0, — ) where I(6,) is any of the
three consistent estimators of 5.5.

(¢) R, = Z'I7Y(6y)Z, where Z, = n 0(0p; X ™).

(ii) Dsn under simple null. (JAW 4.9)
If 0 = 0y, each converges in dsn to x;.

(iii) For W,: From 5.4 (ii) and 5.5.1
n2(8, — 60)' (01 1u(0.)) n2(8, — 60) —a D'I(B)D ~
n2(6, — 00)' 1(6,)n2 (0, — 00) —a D'I(0)D ~ x>

(iv) For 2log(\,): On G, 74,(6,) = 0 so
G0 = 0u0,) — (0, — B0 (1,(02)(6, — 6))

2log(\y) = 2(€,(6,)
n2(6, — 60)" (n'J,(62)) (6, — 6)
where D ~ N,(0,171(6))

(v) For R,, result follows trivially, since we already know
Zn = Nk(oa [(90))



6.2 Distributions under fixed alternatives

(i) Fixed alternatives: 6 is true; 6, hypothesized.

(i) n~"2log(X,) = 207" (£,(0,) — £,(60))
= 2710, (0) — £,(600)) + 201 (0,(0,) — £,(0))
)

X
— 2E9(log fol +O'Xk = 2K(Fy, Fy,)

fu(X)

by WLLN and 6.1 (iv), (and > 0 if B # Fp,).
(iii) 6, —, 0, 1(6,) —, 1(6) so, by cts mapping thm,

n~ W, —, (0 — 00) 1(60)(
(iv) A6: 1E9(vg(907 ) <
Then n_?Zn = n‘l \VA €<‘90; (n ) —p EQ(VK<90, X@)) SO

n Ry, —, Bg(7L(00; Xi))' T~ (00)Ea(7€(00; X))

(v) Assuming, in the case of R, that E,(x//(0y; X;)) # 0,
~Ix each statistic —, to something strictly positive

6 — ) > () if 1(0) pos.def.

then n
if 6 £ 6,.

Each test has \7 dsn if 0 = 6.

Hence if 6 # 0y, each test rejects H, : 0 = 0, with prob. — 1
as n — oQ.

That is, each test is consistent.

(vi) To obtain non-degenerate limit dsn, we need

alternatives 60, — 6, as n — oo. In fact, local alternatives
1

0, = 0y + sn™2.



DO —

6.3 Distributions under alternatives 6, = 6y + sn™
(i) First generalization of 5.4 Theorem for Fj,
(a) n2(6, —6,) —a D~ Np(0,174(6))

() Za(0) =072 7 La(0; X)) =4 Z ~ N(0,1(6)))

(ii) Second generalization of 5.4 Thm for Fj,
(a) n2(0, — 6p) —a Nils, "' (6y))
1
(b)  Zu(00) =27 La(00; X)) —4 Ni(I(00)s, 1(6))

(iii) Using LeCam’s 3 rd Lemma, can prove (ii) and hence
deduce (i) — see JAW notes 3.35,4.13. Alternatively,
Ibramigov & Has’minskii (1981), can prove (i) and hence
deduce (ii). This proof of (i) is as for Thm of 5.4,

EXCEPT expectations are taken at 0, ~ 0;,, and limits
have to work as 60, — 6,. WE ASSUME THIS IS OK!!

(iv) So ASSUME (i): now we show (ii).
n2(6, — 6)) = n2(6, — 6,) +n2(6, — 6
—g D+s ~ Nk(S,[_l(eo))
Zo(00) = Zu(B) + (= (00 (60 — 6,)
—d 7 + 1(90)8 ~ Nk([(eo)S, 1(90))

—_

(v) Under prev. assumptions, and with 0, = 6; + sn2
2log A\, —a (D +s)'T(6y)(D+s) see 6.1
W, —q (D+8)1(6p)(D + s)
R, —a (Z+1(60)s) T~ (60)(Z + 1(6y)s)
=4 (D +5)'T(00)I~"(60)I(60)(D + s)
and (D + s)'1(0y)(D + s) ~ x7(6) where 6 = s'I(6)s.
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6.4 Defns and dsns: composite null hypothesis (JAW 4.14)

(i) Partition 0 = (01, 6,) of dim m and k — m.

Partition 1(6), D, Z,, Z etc. similarly.

Let Hy: 0 € ©y) C © where Oy ={6;0, =0,,}. H;;0 € ©\ 6
Let 6, and 9~n0 = (b, 65777/0) be consistent roots of the
likelihood eqn under H; and H,.

(ii) (I~ )11 = (I11. 2>_ Lo =111 — [12[2_21[21 and

(I™1)19 = —I [12(17Y)9 with [ symm., and 1 < 2 eqns also.

(i) 2log X, = 2log(L(©; X )/ L(Og; X)) = 2(£,(0,) — £a(6))

W, = n(9n1 - 91 0)' [1102(9n1 —091,0)
R, = Zt(en )I_l(en )Zn<9n )
(iv) Suppose 0 =6y = (0),09) where 6) = 6, so Hy is true.
Now 12(6,—0) —q D ~ Ni(0,17(6,)) so n2(61,,—01¢) —q Dy ~

Npu(0,(I71)11) = Na(0, I17h)

~ 0 ~ 0 0
(v) Zn(eg )= (Zp1(0, ), ZnOQ(H )) By defn, (Qn —6y) =
= (O 92n —60) and an(Q )— n 278(@1 0,92)‘9 9~ = 0. AlSO,
QNnO is estimated with 6, = §) fixed and true, so n2(92 no —

09) —4 N(0,I5') equiv 1551 Zy. (NOT I = (I71)99).
(vi)Then, with |0% — 6| < |6, — 6]
Zn,1(9~n0> = N 1221‘6%
= Zua(00) + (=0 Jua(0))n? (03, — 09)
—q Z1— 1o(00)15'(00) 2, = ZF = Zys
where 7 = (Z,,75)" = I(6))D ~ Ni(0,1(6))).
(vii) Now var(Z, — I1215' Z5) = 11 — I1215' [51 = I11.5, so overall

Zo(0n) —a (25,0 ~ (Nyu(0,1112),0)"-
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6.5 Dsns of text statistics, under null and local
alternatives

(i) Theorem 1: If assumptions holds as previously, and
90 € @0 (HO true) thenNTn —d Di[ll.QDl ~ X%—(k—m) = X%ﬂ
where 7, is any of 2log \,, W,,, or R,.

(11) Wn —d Di[n.ng ~ X?n by (IV) above

Ry —q (Z5,0)I7H(600)(Z7,0)" = (Z°)I;15(00) 2" ~ x5, by (vi),
(vii) above.

2 log )\Nn = Q(En(én) o En(éno))

- 2(€n(e~n) - En(QO)) - 2(€n(9~n ) - gn(eo))
—q Z2'I7'Z — Zt1,,'Zy by (v) above.

(iii) Now recall Z* = 7| — I1515,,' 75, so
217 = (Z% 4 11915 Zy, Zo)' T HZ* + Lol Zo, 7)

Quadr term in Z* is (Z*)(I Y\ 2* = (257"
Linear term in Z* is 2Z4(I5' Iy (I 1)1 + (I 1)91)Z* = 0
Quadr term in 7, is ZLHZy with H = ... = ... = Il
So, putting it together 2log \, —q (Z*)' ;2"

(We will do this arithmetic — but no time to latex it here.)

(iv) Define Z* = 7| — I1915,' Zy = Z1.5, then
(2) D =(1(60)"'Z = (In'y 212, 1391 Z24)!
(b) COV(Zl.Q, ZQ) = COV(ZQ.l, Zl) =0

(v) Theorem 2 (not proved):

Under all previous assumptions and conditions, and 6, =
6o + sn_%, 0y € ©p, then, under F, , 2log Ay Wa, Ry —a

(Dl + Sl)tln.g(Dl + 81) ~ X?n((s) where ) = 83111.281.



6.6 Practicalities: a useful table

2log\, R, W,
(a) Simple Hy; 0 = 6

Max. (unconstr.) Yes No Yes
Eval. /,(0) Yes No No
Eval. /,(0) No Yes No
Eval. 1(0) No Yes (Yes®)
(b) Composite Hy: 6, =6,

Max. (unconstr.) Yes No Yes
Max. (constrained) Yes Yes No
Eval. /,(60) Yes No No
Eval. //,(0) No Yes No
Eval. () No Yes (Yes™)

x: or some variance estimate for MLE.
x*: Need to evaluate I;;,, or some consistent estimator.

Note about dimensions and units:

(a) Only matrices of appropriate dimensions can be
multiplied, for example 1515 (I71)91I11.001.....

(b) Vectors such as Z,, 6, etc are column vectors,
transposes t should be interpreted appropriately (and may
be wrong): for example (Z;, Z;)" denotes the k x 1 column
vector of Z; piled above Z;.

(c) Let units of § be u, so also 0., QNnO, D.

Units of var(d,) would be u?, so of I(6) is u>.

¢, (and any standardized test statistic) should be u’.
Score = 0/,,/00, has dim u™!, so also Z.

(d) Equations such as (I 1)y = (I;; — [1215'I5)"! must have
matching units — here /-inverse units.
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6.7 Reparametrization

(i) A hypothesis ;1 = A could be parametrized as ¢ = (u —
)‘):Oa %D:(N/)\—l) = 0, ¢:()‘/:u_1>207 wzlog(ﬂ/)\)zo
etc.

Does it matter which ¢y we choose?

Let ¢(f) be a 1-1 transf R — R,

(ii) 2 log Xn = 2(€n(9~n) o gn(éno)) - Q(Kn(cin) o En(dno))

Maximized lhds unchanged by reparametrization — so
2log A\, is invariant.

(iii) R, = Z}fb(éno)[_l(ﬁ )2, (0, ) is invariant, since

Zn(q) = (V4(0))Z,(0) and I(q) = (v (9))1(9)(%(9)), S0

Ri(q) = (Z(0))"(74(0))' ((74(0)) 71 I7H(0)(V4(0)) " (4(0)) Z0(6)
= Ru(6). (V4(0))y; = G-

(iv) Note the Rao statistic may be computed in any
parametrization, giving the same statistic, but it is
simplest to compute for ¢ for which Hy : ¢ = ¢ o since
then Zn72(q~no) = 0.

(v) In # parametrization: W, = n(0,; — 010) I112(0,1 — 010) is
quadratic form in (6, — 6y).

In ¢(f) parametrization, W, is quadratic form in (g, —
q(f19)): which will not in general have corresponding
0 components. W, is NOT invariant under non-linear
transformations of the parameters.



