Chapter 5: Likelihood estimation JAW Ch.4, Sev. Ch. 4

5.1 Maximum likelihood estimation: basics

(i) Suppose:

(a) A0: $X_1, ..., X_n$ are i.i.d. P_{θ} : $\theta \in \Theta \subset \mathbb{R}^k$

(b) A1: Identifiability: $\theta \neq \theta^* \Rightarrow P_{\theta} \neq P_{\theta^*}$

(c) A2: P_{θ} has density $f(\cdot; \theta)$ w.r.t σ -finite μ .

(d) A3: $A = \{x : f(x; \theta) > 0\}$ does not depend on θ .

(ii) Given A0,A1,A2:

the likelihood $L_n(\theta) = L(\theta;X^{(n)}) = f_n(X^{(n)};\theta) = \prod_{i=1}^n f(X_i;\theta)$ The log-likelihood $\ell_n(\theta) = \log_e L_n(\theta) = \sum_{i=1}^n \log f(X_i; \theta)$ For set $B \subset \Theta$, $\ell_n(B) \equiv \sup_{\theta \in B} \ell_n(\theta)$.

(iii) Given A0,A1,A2: the value $\widehat{\theta_n}$ of θ which maximises the likelihood $L_n(\theta)$, if it exists and is unique, is the maximum likelihood estimator (MLE) of θ . Note $\ell_n(\Theta) \,\,\, = \,\,\, \ell_n(\theta_n).$

(iv) Given A0-A3, and differentiability of $L_n(\theta)$ the MLE may be found by solving the *likelihood equation* or *score* equation, $\nabla \ell_n(\theta) = 0$. (However, this equation may have no roots in Θ , or multiple roots.)

(v) Basic properties:

(a) the MLE depends only on the minimal sufficient statistic

(b) MLE's are NOT necessarily unbiased – if consistent, then unbiased in the limit $(E(T_n) \rightarrow q(\theta)$, provided $E(T_n)$ < M < ∞) (cf TPE "asymptotically unbiased").

(c) If an unbiased estimator attaining the CRLB exists, it is the MLE.

(d) If $q(\theta)$ is any 1-1 function of θ , $q(\theta) = q(\theta)$.

5.2 Kullback-Leibler Information (JAW 4.3)

(i) Defn: Let P and Q be probability measures (Q) may be sub-prob.meas.) with densities p and q. Then $K(P,Q) \equiv$ $E_P(\log(p(X)/q(X))).$

(ii) $K(P,Q)$ is well-defined, and ≥ 0 (possibly ∞), and $= 0$ iff $Q = P$. (Proof by Jensen's inequality, or by $\log x \leq$ $(x - 1)$.)

(iii) If A0-A3, the SLLN gives, under P_{θ_0} , for $\theta \neq \theta_0$

$$
\frac{1}{n}\log \frac{L(\theta_0: X^{(n)})}{L(\theta; X^{(n)})} = \frac{1}{n}\sum_{1}^{n}\log \frac{P_{\theta_0}(X_i)}{P_{\theta}(X_i)} \to_{a.s.} K(P_{\theta_0}, P_{\theta}) > 0
$$

 (iv) Thus $P_{\theta_0}(L(\theta_0:X^{(n)}) > L(\theta;X^{(n)})) \to 1$ as $n \to \infty$. This motivates the definition of $\widehat{\theta_n}$, but

"Likelihood is a pointwise function on Θ " To proceed we need some metric/uniformity/smoothness w.r.t θ .

(iv) A4: $\Theta \supset \Theta_0$, an open set in \Re^k , and for $\theta \in \Theta_0$: (a) $\ell(\theta; x) \equiv \log p_{\theta}(x)$ is twice continuously diffble in θ $(\mu \ (a.e.) x)$

(b) μ (a.e.) x, third order derivatives exist, with $\frac{\partial^3 \ell}{\partial \theta \cdot \partial \theta \cdot \mu}$ $\partial\theta_j\partial\theta_l\partial\theta_u$ bounded by $M_{jlu}(x)$ for all $\theta\in\Theta_0,$ and ${\rm E}_{\theta_0}(M_{jlu}(X))<\infty$ for all $j, l, u = 1, ..., k$

(v) **A5:** (a)
$$
E_{\theta_0}(\nabla \ell(\theta; X)|_{\theta=\theta_0}) = 0
$$
.

(b) $E_{\theta_0}((\nabla \ell(\theta; X))^t(\nabla \ell(\theta; X))|_{\theta=\theta_0}) = \sum_{j=1}^k \left(\frac{\partial l}{\partial \theta_j}\right)$ $\partial\theta_j$ \setminus^2 $< \infty$.

(c) $I(\theta_0) = -\left(\mathrm{E}_{\theta_0}(\frac{\partial^2 \ell}{\partial \theta_i \partial \theta_i})\right)$ $\frac{\partial^2 \ell}{\partial \theta_j \partial \theta_l})|_{\theta = \theta_0} \Big) \text{ is positive definite.}$ 5.3 Consistency of MLE (JAW 4.7, Severini 4.2)

(i) Theorem: Suppose A0-A5. Then, with probability \rightarrow 1 as $n \rightarrow \infty$, \exists solution $\tilde{\theta}_n$ of the likelihood equations s.t. $\tilde{\theta_n} \rightarrow_p \theta_0$ when P_{θ_0} is true.

(ii) For $a > 0$ let $Q_a \equiv {\theta \in \Theta : |\theta - \theta_0| = a}$. We show below that, provided $Q_a \subset \Theta_0$, then $P_{\theta_0}(\sup_{\theta \in Q_a} \ell(\theta) < \ell(\theta_0)) \to 1$ as $n \to \infty$. Hence there is a local max, which must be root of the likelihood eqn, inside Q_a .

(Note $\sup_{Q_a} \ell(\theta)$ is attained on Q_a by some $\theta \in Q_a$.)

(iii) Define "observed information" $J(\theta_0) = -\left(\frac{\partial^2 \ell}{\partial \theta_i \partial \theta_j}\right)$ $\frac{\partial^2 \ell}{\partial \theta_i \partial \theta_j} \big \vert \theta = \theta_0 \bigg)$. (Note that $J(\theta)$, unlike $I(\theta)$, is a r.v.)

(iv)
$$
n^{-1}(\ell(\theta; X^{(n)}) - \ell(\theta_0; X^{(n)}))
$$

$$
= n^{-1}(\theta - \theta_0)^t \nabla (\ell(\theta_0)) + \frac{1}{2}(\theta - \theta_0)^t (-n^{-1}J(\theta_0))(\theta - \theta_0)
$$

+
$$
(6n)^{-1} \sum_{jlu} (\theta_j - \theta_{0,j})(\theta_l - \theta_{0,l})(\theta_u - \theta_{0,u}) \sum_i \gamma_{jlu}(X_i)M_{jlu}(X_i)
$$

= $S_1 + S_2 + S_3$

where $|\gamma_{jlu}| < 1$ (by A4 (b)).

(v) By A5 and WLLN: $S_1 \rightarrow_p 0$, $-2S_2 \rightarrow_p (\theta - \theta_0)^t I(\theta_0) (\theta \theta_0$) $\geq \lambda_k a^2$ where λ_k is smallest eigenvalue of $I(\theta_0)$. $S_3 \to_p (1/6) \sum_{jlu} (\theta_j - \theta_{0,j}) (\theta_l - \theta_{0,l}) (\theta_u - \theta_{0,u}) E_{\theta_0}(\gamma_{jlu}(X_1) M_{jlu}(X_1))$ and $|S_3| \leq (1/3)(ka)^3 \sum_{jlu} m_{jlu} \equiv Ba^3$ as $n \to \infty$.

(vi) For large enough n

$$
\sup_{\theta \in Q_a} (S_1 + S_2 + S_3) \leq \sup_{\theta \in Q_a} |S_1 + S_3| + \sup_{\theta \in Q_a} (S_2)
$$

< $(k + B)a^3 - \lambda_k a^2/4$
< 0 for small enough a

5.4 Aymptotic normality and efficiency of $\hat{\theta}_n$. (Sev. 4.2.2)

(i) Notation

 $Z_n \equiv n^{-\frac{1}{2}}$ $\overline{P}^{\frac{1}{2}}\, \Sigma_i \,\nabla (\ell(\theta_0;X_i)) \,\,\, = \,\,\, n^{-\frac{1}{2}} \, \nabla \, \ell_n(\theta_0;X^{(n)}),$ $\tilde{\ell}(\theta_0;X) \equiv I^{-1}(\theta_0) \bigtriangledown \ell(\theta_0;X)$ so $n^{-\frac{1}{2}}$ $\frac{1}{2} \sum_{i=1}^n \tilde{\ell}(\theta_0; X_i) = I^{-1}(\theta_0) Z_n.$ $\textbf{Define} \ \ G_n(\epsilon) \equiv \{ \widetilde{\theta_n} ; \bigtriangledown \ell_n(\widetilde{\theta_n}) = 0, |\widetilde{\theta_n} - \theta_0| < \epsilon \} \ \ \textbf{non-empty as}$ $n \to \infty$, $\forall \epsilon > 0$. (Also note here $I(\theta) \equiv I_1(\theta)$.)

(ii) Theorem

(a)
$$
(n^{\frac{1}{2}}(\tilde{\theta}_n - \theta_0) - n^{-\frac{1}{2}} \sum_{i=1}^n \tilde{\ell}(\theta_0; X_i) \to_p 0
$$

\n(b) $n^{-\frac{1}{2}} \sum_{i=1}^n \tilde{\ell}(\theta_0; X_i) \to_d I^{-1}(\theta_0) Z \equiv D \sim N_k(0, I^{-1}(\theta_0)).$

\n- (iii) First (b): by CLT
$$
Z_n \rightarrow_d N(0, I(\theta_0))
$$
, so $n^{-\frac{1}{2}} \sum_{i=1}^n \tilde{\ell}(\theta_0; X_i) = I^{-1}(\theta_0) Z_n \rightarrow_d N(0, I^{-1}(\theta_0))$
\n- (iv) On G_n ,
\n

$$
0 = n^{-\frac{1}{2}} \nabla \ell_n(\tilde{\theta}_n) = n^{-\frac{1}{2}} \nabla \ell_n(\theta_0) - n^{-1} J_n(\theta_n^*) n^{\frac{1}{2}} (\tilde{\theta}_n - \theta_0)
$$

where $|\theta_n^* - \theta_0| < |\tilde{\theta}_n - \theta_0|$.
Or $n^{\frac{1}{2}} (\tilde{\theta}_n - \theta_0) = (n^{-1} J_n(\theta_n^*))^{-1} Z_n$ if $J_n^{-1}(\theta_n^*) \exists$.

 $(v) \tilde{\theta}_n \rightarrow_p \theta_0$, so using one-term expansion of 2 nd. deriv, $\quad \text{and boundedness of } \textbf{3} \text{ rd.}, \text{ } n^{-1}(J_n(\theta^*_n))$ $\Gamma_n^*) \,-\, J_n(\theta_0)) \,\,\rightarrow_p \, \, 0. \quad \mathbf{By}$ continuity, $(n^{-1}J_n(\theta^*_n$ $\big(\begin{matrix}I_m\end{matrix}\big)^{-1}\to_p \ (\mathrm{E}(J_1(\theta_0)))^{-1} \quad =\quad I^{-1}(\theta_0). \ \ \ \text{(and)}$ $J_n(\theta_n^*)$ $\binom{*}{n}$ is pos def with prob approaching 1). $\mathbf{Now}\ \overline{I^{-1}(\theta_0)}Z_n = n^{-\frac{1}{2}}$ $\frac{1}{2} \sum_{i=1}^n \tilde{\ell}(\theta_0; X_i) \,\, \text{hence (a)}.$

(vi) Transforming (ii) to $q(\theta)$: dim $(q) = k^*$, $1 \leq k^* \leq k$

(a)
$$
(n^{\frac{1}{2}}(q(\tilde{\theta}_n) - q(\theta_0)) - n^{-\frac{1}{2}} \sum_{i=1}^{n} \tilde{\ell}_q(\theta_0; X_i)) \longrightarrow_p 0
$$

(*b*) $n^{-\frac{1}{2}}$ $\bar{2}$ \sum n $i=1$ $\tilde{\ell}_q(\theta_0; X_i) \rightarrow_d N_{k^*}(0, (\nabla q(\theta_0))^t I^{-1}(\theta_0)(\nabla q(\theta_0))).$

where $\tilde{\ell}_q(\theta_0; X_i) = (\nabla q(\theta_0))^t I^{-1}(\theta_0)(\nabla \ell(\theta_0, X_i))$

5.5 Bits and pieces

5.5.1 Estimation of $I(\theta)$: Suppose we need to estimate $I(\theta_0)$, and have A0-A5, as above, so ℓ_n is twice continuously diffble, and expectations ∃:

(a) $\tilde{\theta}_n \to_p \theta_0$, so $I(\tilde{\theta}_n) \to_p I(\theta_0)$, but $I(\theta)$ can be hard to compute.

(b) $n^{-1}\sum_{i=1}^n(\bigtriangledown \ell(\tilde{\theta_n};X_i))(\bigtriangledown \ell(\tilde{\theta_n};X_i))^t$ is also a consistent $\textbf{estimator of}\,\, I(\theta_0),\,\, \textbf{since}\,\, \nabla \ell(\tilde{\theta_n}; X_i)\,\, \rightarrow_p \,\, \nabla \ell(\theta_0; X_i).$

(c) Often easiest is to use the second derivatives:

$$
\left(-n^{-1}\sum_{i=1}^n \frac{\partial^2 \ell(\theta; X_i)}{\partial \theta_j \partial \theta_l}\right)|_{\theta=\tilde{\theta_n}} = (n^{-1}J_n(\tilde{\theta_n}))
$$

is also a consistent estimator of $I(\theta_0)$.

(d) If CRLB attained: $\bigtriangledown \ell_n(\theta) = nI(\theta)(\widehat{\theta}_n - \theta)$ $\textbf{Hence (differentially)}, \ n^{-1} J_n(\widehat{\theta_n}) \ = \ I(\widehat{\theta_n}).$

5.5.2 The one-step estimator

We want to solve $\bigtriangledown \ell_n(\theta;X^{(n)}) = 0$. This can be hard. Suppose we have a preliminary estimator $\overline{\theta_n}$. Then we can do one-step Newton-Raphson:

$$
0 = \nabla \ell_n(\theta; X^{(n)}) \approx \nabla \ell_n(\overline{\theta_n}; X^{(n)}) + \left(\frac{\partial^2 \ell_n}{\partial \theta_j \partial \theta_l}\right)|_{\theta = \overline{\theta_n}}(\theta - \overline{\theta_n})
$$

Thus, replacing the second derivatives by some consistent ${\rm estimator\ } -\widehat{I}\ {\rm from\ }({\rm a}),({\rm b})\ {\rm or}\ ({\rm c})\ {\rm above},\ {\rm new}\ \theta^*_n$ $_n^*$ is

$$
\theta_n^* = \overline{\theta_n} + (nI(\widehat{\overline{\theta_n}}))^{-1} \nabla \ell_n(\overline{\theta_n}; X^{(n)})
$$

If $n^{1/4}(\overline{\theta_n}-\theta_0) \to_p 0$ then θ_n^* $_n^*$ satisfies same Theorem 5.4(ii) (a) and (b) as $\tilde{\theta_n}$ –see JAW 4.7.

5.6 Appendix: summary of notation

