Chapter 5: Likelihood estimation JAW Ch.4, Sev. Ch. 4 5.1 Maximum likelihood estimation: basics

- (i) Suppose:
- (a) A0: $X_1, ..., X_n$ are i.i.d. P_{θ} : $\theta \in \Theta \subset \Re^k$
- (b) A1: Identifiability: $\theta \neq \theta^* \Rightarrow P_{\theta} \neq P_{\theta^*}$
- (c) A2: P_{θ} has density $f(\cdot; \theta)$ w.r.t σ -finite μ .
- (d) A3: $A = \{x : f(x; \theta) > 0\}$ does not depend on θ .
- (ii) Given A0,A1,A2:

the *likelihood* $L_n(\theta) = L(\theta; X^{(n)}) = f_n(X^{(n)}; \theta) = \prod_{i=1}^n f(X_i; \theta)$ The log-likelihood $\ell_n(\theta) = \log_e L_n(\theta) = \Sigma_1^n \log f(X_i; \theta)$ For set $B \subset \Theta$, $\ell_n(B) \equiv \sup_{\theta \in B} \ell_n(\theta)$.

- (iii) Given A0,A1,A2: the value $\widehat{\theta_n}$ of θ which maximises the likelihood $L_n(\theta)$, if it exists and is unique, is the maximum likelihood estimator (MLE) of θ . Note $\ell_n(\Theta) = \ell_n(\widehat{\theta_n})$.
- (iv) Given A0-A3, and differentiability of $L_n(\theta)$ the MLE may be found by solving the *likelihood equation* or *score* equation, $\nabla \ell_n(\theta) = 0$. (However, this equation may have no roots in Θ , or multiple roots.)
- (v) Basic properties:
- (a) the MLE depends only on the minimal sufficient statistic
- (b) MLE's are NOT necessarily unbiased if consistent, then unbiased in the limit $(E(T_n) \to q(\theta), \text{ provided})$ $E(T_n) < M < \infty$ (cf TPE "asymptotically unbiased").
- (c) If an unbiased estimator attaining the CRLB exists, it is the MLE.
- (d) If $q(\theta)$ is any 1-1 function of θ , $\widehat{q(\theta)} = q(\widehat{\theta})$.

- 5.2 Kullback-Leibler Information (JAW 4.3)
- (i) Defn: Let P and Q be probability measures (Q may be sub-prob.meas.) with densities p and q. Then $K(P,Q) \equiv \mathbb{E}_P(\log(p(X)/q(X)))$.
- (ii) K(P,Q) is well-defined, and ≥ 0 (possibly ∞), and = 0 iff Q = P. (Proof by Jensen's inequality, or by $\log x \leq (x-1)$.)
- (iii) If A0-A3, the SLLN gives, under P_{θ_0} , for $\theta \neq \theta_0$

$$\frac{1}{n}\log\frac{L(\theta_0:X^{(n)})}{L(\theta;X^{(n)})} = \frac{1}{n}\sum_{i=1}^{n}\log\frac{P_{\theta_0}(X_i)}{P_{\theta}(X_i)} \to_{a.s.} K(P_{\theta_0},P_{\theta}) > 0$$

(iv) Thus $P_{\theta_0}(L(\theta_0:X^{(n)})>L(\theta;X^{(n)}))\to 1$ as $n\to\infty$. This motivates the definition of $\widehat{\theta_n}$, but

"Likelihood is a pointwise function on Θ "
To proceed we need some metric/uniformity/smoothness w.r.t θ .

- (iv) A4: $\Theta \supset \Theta_0$, an open set in \Re^k , and for $\theta \in \Theta_0$:
- (a) $\ell(\theta; x) \equiv \log p_{\theta}(x)$ is twice continuously diffble in θ (μ (a.e.) x)
- (b) μ (a.e.) x, third order derivatives exist, with $\frac{\partial^3 \ell}{\partial \theta_j \partial \theta_l \partial \theta_u}$ bounded by $M_{jlu}(x)$ for all $\theta \in \Theta_0$, and $E_{\theta_0}(M_{jlu}(X)) < \infty$ for all j, l, u = 1, ..., k
- (v) A5: (a) $E_{\theta_0}(\nabla \ell(\theta; X)|_{\theta=\theta_0}) = 0$.
- **(b)** $E_{\theta_0}((\nabla \ell(\theta; X))^t(\nabla \ell(\theta; X))|_{\theta=\theta_0}) = \sum_{j=1}^k \left(\frac{\partial l}{\partial \theta_j}\right)^2 < \infty.$
- (c) $I(\theta_0) = -\left(\mathbb{E}_{\theta_0}(\frac{\partial^2 \ell}{\partial \theta_i \partial \theta_l})|_{\theta=\theta_0}\right)$ is positive definite.

- 5.3 Consistency of MLE (JAW 4.7, Severini 4.2)
- (i) Theorem: Suppose A0-A5. Then, with probability $\to 1$ as $n \to \infty$, \exists solution $\tilde{\theta_n}$ of the likelihood equations s.t. $\tilde{\theta_n} \to_p \theta_0$ when P_{θ_0} is true.
- (ii) For a > 0 let $Q_a \equiv \{\theta \in \Theta : |\theta \theta_0| = a\}$. We show below that, provided $Q_a \subset \Theta_0$, then $P_{\theta_0}(\sup_{\theta \in Q_a} \ell(\theta) < \ell(\theta_0)) \to 1$ as $n \to \infty$. Hence there is a local max, which must be root of the likelihood eqn, inside Q_a .

(Note $\sup_{Q_a} \ell(\theta)$ is attained on Q_a by some $\theta \in Q_a$.)

(iii) Define "observed information" $J(\theta_0) = -\left(\frac{\partial^2 \ell}{\partial \theta_i \partial \theta_j}|_{\theta=\theta_0}\right)$. (Note that $J(\theta)$, unlike $I(\theta)$, is a r.v.)

(iv)
$$n^{-1}(\ell(\theta; X^{(n)}) - \ell(\theta_0; X^{(n)}))$$

$$= n^{-1}(\theta - \theta_0)^t \nabla (\ell(\theta_0)) + \frac{1}{2}(\theta - \theta_0)^t (-n^{-1}J(\theta_0))(\theta - \theta_0) + (6n)^{-1} \sum_{jlu} (\theta_j - \theta_{0,j})(\theta_l - \theta_{0,l})(\theta_u - \theta_{0,u}) \sum_i \gamma_{jlu}(X_i) M_{jlu}(X_i) = S_1 + S_2 + S_3$$

where $|\gamma_{jlu}| < 1$ (by A4 (b)).

- (v) By A5 and WLLN: $S_1 \to_p 0$, $-2S_2 \to_p (\theta \theta_0)^t I(\theta_0)(\theta \theta_0) \ge \lambda_k a^2$ where λ_k is smallest eigenvalue of $I(\theta_0)$. $S_3 \to_p (1/6) \sum_{jlu} (\theta_j \theta_{0,j})(\theta_l \theta_{0,l})(\theta_u \theta_{0,u}) \mathbb{E}_{\theta_0}(\gamma_{jlu}(X_1) M_{jlu}(X_1))$ and $|S_3| \le (1/3)(ka)^3 \sum_{jlu} m_{jlu} \equiv Ba^3$ as $n \to \infty$.
- (vi) For large enough n

$$\sup_{\theta \in Q_a} (S_1 + S_2 + S_3) \leq \sup_{\theta \in Q_a} |S_1 + S_3| + \sup_{\theta \in Q_a} (S_2)$$

$$< (k+B)a^3 - \lambda_k a^2/4$$

$$< 0 \text{ for small enough } a$$

5.4 Aymptotic normality and efficiency of $\tilde{\theta_n}$. (Sev. 4.2.2)

(i) Notation

$$Z_n \equiv n^{-\frac{1}{2}} \Sigma_i \nabla(\ell(\theta_0; X_i)) = n^{-\frac{1}{2}} \nabla \ell_n(\theta_0; X^{(n)}),$$
 $\tilde{\ell}(\theta_0; X) \equiv I^{-1}(\theta_0) \nabla \ell(\theta_0; X) \text{ so } n^{-\frac{1}{2}} \Sigma_{i=1}^n \tilde{\ell}(\theta_0; X_i) = I^{-1}(\theta_0) Z_n.$
Define $G_n(\epsilon) \equiv \{\tilde{\theta}_n; \nabla \ell_n(\tilde{\theta}_n) = 0, |\tilde{\theta}_n - \theta_0| < \epsilon\}$ non-empty as $n \to \infty, \forall \epsilon > 0.$ (Also note here $I(\theta) \equiv I_1(\theta).$)

(ii) Theorem

(a)
$$(n^{\frac{1}{2}}(\tilde{\theta_n} - \theta_0) - n^{-\frac{1}{2}} \sum_{i=1}^n \tilde{\ell}(\theta_0; X_i)) \rightarrow_p 0$$

(b)
$$n^{-\frac{1}{2}} \sum_{i=1}^{n} \tilde{\ell}(\theta_0; X_i) \rightarrow_d I^{-1}(\theta_0) Z \equiv D \sim N_k(0, I^{-1}(\theta_0)).$$

(iii) First (b): by CLT
$$Z_n \to_d N(0, I(\theta_0))$$
, so $n^{-\frac{1}{2}} \sum_{i=1}^n \tilde{\ell}(\theta_0; X_i) = I^{-1}(\theta_0) Z_n \to_d N(0, I^{-1}(\theta_0))$

(iv) On G_n ,

$$0 = n^{-\frac{1}{2}} \nabla \ell_n(\tilde{\theta_n}) = n^{-\frac{1}{2}} \nabla \ell_n(\theta_0) - n^{-1} J_n(\theta_n^*) n^{\frac{1}{2}} (\tilde{\theta_n} - \theta_0)$$
where $|\theta_n^* - \theta_0| < |\tilde{\theta_n} - \theta_0|$.
Or $n^{\frac{1}{2}} (\tilde{\theta_n} - \theta_0) = (n^{-1} J_n(\theta_n^*))^{-1} Z_n$ if $J_n^{-1} (\theta_n^*) \exists$.

(v) $\tilde{\theta_n} \to_p \theta_0$, so using one-term expansion of 2 nd. deriv, and boundedness of 3 rd., $n^{-1}(J_n(\theta_n^*) - J_n(\theta_0)) \to_p 0$. By continuity, $(n^{-1}J_n(\theta_n^*))^{-1} \to_p (\mathbb{E}(J_1(\theta_0)))^{-1} = I^{-1}(\theta_0)$. (and $J_n(\theta_n^*)$ is pos def with prob approaching 1).

Now $I^{-1}(\theta_0)Z_n = n^{-\frac{1}{2}} \sum_{i=1}^n \tilde{\ell}(\theta_0; X_i)$ hence (a).

(vi) Transforming (ii) to $q(\theta)$: dim $(q) = k^*$, $1 \le k^* \le k$

(a)
$$(n^{\frac{1}{2}}(q(\tilde{\theta_n}) - q(\theta_0)) - n^{-\frac{1}{2}} \sum_{i=1}^n \tilde{\ell_q}(\theta_0; X_i)) \longrightarrow_p 0$$

(b)
$$n^{-\frac{1}{2}} \sum_{i=1}^{n} \tilde{\ell}_{q}(\theta_{0}; X_{i}) \rightarrow_{d} N_{k^{*}}(0, (\nabla q(\theta_{0}))^{t} I^{-1}(\theta_{0})(\nabla q(\theta_{0}))).$$

where
$$\tilde{\ell}_q(\theta_0; X_i) = (\nabla q(\theta_0))^t I^{-1}(\theta_0)(\nabla \ell(\theta_0, X_i))$$

- 5.5 Bits and pieces
- 5.5.1 Estimation of $I(\theta)$: Suppose we need to estimate $I(\theta_0)$, and have A0-A5, as above, so ℓ_n is twice continuously diffble, and expectations \exists :
- (a) $\tilde{\theta_n} \to_p \theta_0$, so $I(\tilde{\theta_n}) \to_p I(\theta_0)$, but I() can be hard to compute.
- (b) $n^{-1} \sum_{i=1}^{n} (\nabla \ell(\tilde{\theta_n}; X_i)) (\nabla \ell(\tilde{\theta_n}; X_i))^t$ is also a consistent estimator of $I(\theta_0)$, since $\nabla \ell(\tilde{\theta_n}; X_i) \to_p \nabla \ell(\theta_0; X_i)$.
- (c) Often easiest is to use the second derivatives:

$$\left(-n^{-1}\sum_{i=1}^{n}\frac{\partial^{2}\ell(\theta;X_{i})}{\partial\theta_{j}\partial\theta_{l}}\right)|_{\theta=\tilde{\theta_{n}}} = \left(n^{-1}J_{n}(\tilde{\theta_{n}})\right)$$

is also a consistent estimator of $I(\theta_0)$.

- (d) If CRLB attained: $\nabla \ell_n(\theta) = nI(\theta)(\widehat{\theta_n} \theta)$ Hence (differentiating), $n^{-1}J_n(\widehat{\theta_n}) = I(\widehat{\theta_n})$.
- 5.5.2 The one-step estimator

We want to solve $\nabla \ell_n(\theta; X^{(n)}) = 0$. This can be hard. Suppose we have a preliminary estimator $\overline{\theta_n}$. Then we can do one-step Newton-Raphson:

$$0 = \nabla \ell_n(\theta; X^{(n)}) \approx \nabla \ell_n(\overline{\theta_n}; X^{(n)}) + \left(\frac{\partial^2 \ell_n}{\partial \theta_j \partial \theta_l}\right) |_{\theta = \overline{\theta_n}} (\theta - \overline{\theta_n})$$

Thus, replacing the second derivatives by some consistent estimator $-\hat{I}$ from (a),(b) or (c) above, new θ_n^* is

$$\theta_n^* = \overline{\theta_n} + (nI(\widehat{\overline{\theta_n}}))^{-1} \nabla \ell_n(\overline{\theta_n}; X^{(n)})$$

If $n^{1/4}(\overline{\theta_n} - \theta_0) \to_p 0$ then θ_n^* satisfies same Theorem 5.4(ii) (a) and (b) as $\tilde{\theta_n}$ –see JAW 4.7.

5.6 Appendix: summary of notation

Notation, definition	description, result, etc.
$X^{(n)} = (X_1,, X_n)$	sample of i.i.d. X_i from pdf f
$\ell_n(\theta; X^{(n)}) = \Sigma_1^n \log f(X_i; \theta)$	log-likelihood function.
$\nabla \ell(\theta; X_i) = \left(\frac{\partial \log f(X_i; \theta)}{\partial \theta_i}\right)$	contribution of X_i to score
$\nabla \ell_n(\theta) = \Sigma_1^n \nabla \ell(\theta; X_i)$	the score function: deriv. of ℓ_n
$I(\theta) = \mathrm{E}(-\frac{\partial^2 \log f(X_i;\theta)}{\partial \theta_i \partial \theta_l})$	$I_n(\theta) = nI(\theta)$: Fisher Information
$J_n(\theta; X^{(n)}) = (-\frac{\partial^2 \ell_n}{\partial \theta_i \partial \theta_l})$	observed information
J	$n^{-1}J_n(\theta) \to_p I(\theta)$
$\theta_0 \in \Theta \subset \Re^k$	true value of θ
$\nabla \ell_n(\theta) = 0$	the likelihood equation
$\widehat{ heta_n};~\mathbf{MLE}$	maximizes $\ell_n(\theta)$ in Θ
$\widetilde{ heta_n}$	root of the likelihood eqn
$Z_n \equiv n^{-\frac{1}{2}} \nabla \ell_n(\theta_0; X^{(n)})$	$Z_n \to_d N(0, I(\theta_0))$
$D_n = I^{-1}(\theta_0) Z_n$	$D_n \to_d D \sim N_k(0, I^{-1}(\theta_0))$
$\tilde{\ell}(\theta_0; X) \equiv I^{-1}(\theta_0) \nabla \ell(\theta_0; X)$	$n^{-\frac{1}{2}} \sum_{i=1}^{n} \tilde{\ell}(\theta_0; X_i) = I^{-1}(\theta_0) Z_n$
$\Delta_n \equiv n^{\frac{1}{2}} (\tilde{\theta_n} - \theta_0)$	$(\Delta_n - D_n) \rightarrow_p 0$
$\tilde{\ell}_n(\theta, X^{(n)}) = \sum_{i=1}^n \tilde{\ell}(\theta; X_i)$	influence fn for θ
$\tilde{\ell}_q(\theta; X^{(n)}) = (\nabla q(\theta))^t \tilde{\ell}_n(\theta)$	$(X^{(n)})$ influence fn for q .