
Chapter 5: Likelihood estimation JAW Ch.4, Sev. Ch. 4

5.1 Maximum likelihood estimation: basics

(i) Suppose:

(a) A0: X1, ..., Xn are i.i.d. Pθ: θ ∈ Θ ⊂ <k

(b) A1: Identifiability: θ 6= θ∗ ⇒ Pθ 6= Pθ∗

(c) A2: Pθ has density f (·; θ) w.r.t σ-finite µ.

(d) A3: A = {x : f (x; θ) > 0} does not depend on θ.

(ii) Given A0,A1,A2:

the likelihood Ln(θ) = L(θ; X(n)) = fn(X(n); θ) =
∏n

i=1 f (Xi; θ)

The log-likelihood `n(θ) = loge Ln(θ) =
∑n

1 log f (Xi; θ)

For set B ⊂ Θ, `n(B) ≡ supθ∈B `n(θ).

(iii) Given A0,A1,A2: the value θ̂n of θ which maximises

the likelihood Ln(θ), if it exists and is unique, is

the maximum likelihood estimator (MLE) of θ. Note

`n(Θ) = `n(θ̂n).

(iv) Given A0-A3, and differentiability of Ln(θ) the MLE

may be found by solving the likelihood equation or score

equation, 5`n(θ) = 0. (However, this equation may have

no roots in Θ, or multiple roots.)

(v) Basic properties:

(a) the MLE depends only on the minimal sufficient

statistic

(b) MLE’s are NOT necessarily unbiased – if consistent,

then unbiased in the limit (E(Tn) → q(θ), provided

E(Tn) < M < ∞) (cf TPE “asymptotically unbiased”).

(c) If an unbiased estimator attaining the CRLB exists,

it is the MLE.

(d) If q(θ) is any 1-1 function of θ, ̂q(θ) = q(θ̂).
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5.2 Kullback-Leibler Information (JAW 4.3)

(i) Defn: Let P and Q be probability measures (Q may be

sub-prob.meas.) with densities p and q. Then K(P, Q) ≡
EP (log(p(X)/q(X))).

(ii) K(P, Q) is well-defined, and ≥ 0 (possibly ∞), and = 0

iff Q = P . (Proof by Jensen’s inequality, or by log x ≤
(x− 1).)

(iii) If A0-A3, the SLLN gives, under Pθ0, for θ 6= θ0

1

n
log

L(θ0 : X(n))

L(θ; X(n))
=

1

n

n∑
1

log
Pθ0(Xi)

Pθ(Xi)
→a.s. K(Pθ0, Pθ) > 0

(iv) Thus Pθ0(L(θ0 : X(n)) > L(θ; X(n))) → 1 as n →∞. This

motivates the definition of θ̂n, but

“Likelihood is a pointwise function on Θ”

To proceed we need some metric/uniformity/smoothness

w.r.t θ.

(iv) A4: Θ ⊃ Θ0, an open set in <k, and for θ ∈ Θ0:

(a) `(θ; x) ≡ log pθ(x) is twice continuously diffble in θ

(µ (a.e.) x)

(b) µ (a.e.) x, third order derivatives exist, with ∂3`
∂θj∂θl∂θu

bounded by Mjlu(x) for all θ ∈ Θ0, and Eθ0(Mjlu(X)) < ∞ for

all j, l, u = 1, ..., k

(v) A5: (a) Eθ0(5`(θ; X)|θ=θ0) = 0.

(b) Eθ0((5`(θ; X))t(5`(θ; X))|θ=θ0) =
∑k

j=1

(
∂l
∂θj

)2
< ∞.

(c) I(θ0) = −
(
Eθ0(

∂2`
∂θj∂θl

)|θ=θ0

)
is positive definite.

2



5.3 Consistency of MLE (JAW 4.7, Severini 4.2)

(i) Theorem: Suppose A0-A5. Then, with probability

→ 1 as n → ∞, ∃ solution θ̃n of the likelihood equations

s.t. θ̃n →p θ0 when Pθ0 is true.

(ii) For a > 0 let Qa ≡ {θ ∈ Θ : |θ− θ0| = a}. We show below

that, provided Qa ⊂ Θ0, then Pθ0(supθ∈Qa
`(θ) < `(θ0)) → 1 as

n → ∞. Hence there is a local max, which must be root

of the likelihood eqn, inside Qa.

(Note supQa
`(θ) is attained on Qa by some θ ∈ Qa.)

(iii) Define “observed information” J(θ0) = −
(

∂2`
∂θi∂θj

|θ=θ0

)
.

(Note that J(θ), unlike I(θ), is a r.v.)

(iv) n−1(`(θ; X(n))− `(θ0; X
(n)))

= n−1(θ − θ0)
t 5 (`(θ0)) +

1

2
(θ − θ0)

t(−n−1J(θ0))(θ − θ0)

+(6n)−1 ∑
jlu

(θj − θ0,j)(θl − θ0,l)(θu − θ0,u)
∑
i

γjlu(Xi)Mjlu(Xi)

= S1 + S2 + S3

where |γjlu| < 1 (by A4 (b)).

(v) By A5 and WLLN: S1 →p 0, −2S2 →p (θ − θ0)
tI(θ0)(θ −

θ0) ≥ λka
2 where λk is smallest eigenvalue of I(θ0).

S3 →p (1/6)
∑

jlu(θj − θ0,j)(θl − θ0,l)(θu − θ0,u)Eθ0(γjlu(X1)Mjlu(X1))

and |S3| ≤ (1/3)(ka)3
∑

jlu mjlu ≡ Ba3 as n →∞.

(vi) For large enough n

sup
θ∈Qa

(S1 + S2 + S3) ≤ sup
θ∈Qa

|S1 + S3| + sup
θ∈Qa

(S2)

< (k + B)a3 − λka
2/4

< 0 for small enough a
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5.4 Aymptotic normality and efficiency of θ̃n. (Sev. 4.2.2)

(i) Notation

Zn ≡ n−
1
2
∑

i5(`(θ0; Xi)) = n−
1
2 5 `n(θ0; X

(n)),
˜̀(θ0; X) ≡ I−1(θ0)5 `(θ0; X) so n−

1
2
∑n

i=1
˜̀(θ0; Xi) = I−1(θ0)Zn.

Define Gn(ε) ≡ {θ̃n;5`n(θ̃n) = 0, |θ̃n − θ0| < ε} non-empty as

n →∞, ∀ε > 0. (Also note here I(θ) ≡ I1(θ).)

(ii) Theorem

(a) (n
1
2(θ̃n − θ0) − n−

1
2

n∑
i=1

˜̀(θ0; Xi)) →p 0

(b) n−
1
2

n∑
i=1

˜̀(θ0; Xi) →d I−1(θ0)Z ≡ D ∼ Nk(0, I
−1(θ0)).

(iii) First (b): by CLT Zn →d N(0, I(θ0)),

so n−
1
2
∑n

i=1
˜̀(θ0; Xi) = I−1(θ0)Zn →d N(0, I−1(θ0))

(iv) On Gn,

0 = n−
1
2 5 `n(θ̃n) = n−

1
2 5 `n(θ0)− n−1Jn(θ∗n)n

1
2(θ̃n − θ0)

where |θ∗n − θ0| < |θ̃n − θ0|.
Or n

1
2(θ̃n − θ0) = (n−1Jn(θ∗n))−1Zn if J−1

n (θ∗n) ∃.
(v)θ̃n →p θ0, so using one-term expansion of 2 nd. deriv,

and boundedness of 3 rd., n−1(Jn(θ∗n) − Jn(θ0)) →p 0. By

continuity,
(
n−1Jn(θ∗n)

)−1 →p (E(J1(θ0)))
−1 = I−1(θ0). (and

Jn(θ∗n) is pos def with prob approaching 1).

Now I−1(θ0)Zn = n−
1
2
∑n

i=1
˜̀(θ0; Xi) hence (a).

(vi) Transforming (ii) to q(θ): dim(q)= k∗, 1 ≤ k∗ ≤ k

(a) (n
1
2(q(θ̃n)− q(θ0)) − n−

1
2

n∑
i=1

˜̀
q(θ0; Xi)) →p 0

(b) n−
1
2

n∑
i=1

˜̀
q(θ0; Xi) →d Nk∗(0, (5q(θ0))

tI−1(θ0)(5q(θ0))).

where ˜̀
q(θ0; Xi) = (5q(θ0))

t I−1(θ0)(5`(θ0, Xi))
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5.5 Bits and pieces

5.5.1 Estimation of I(θ): Suppose we need to estimate

I(θ0), and have A0-A5, as above, so `n is twice continuously

diffble, and expectations ∃:
(a) θ̃n →p θ0, so I(θ̃n) →p I(θ0), but I() can be hard to

compute.

(b) n−1 ∑n
i=1(5`(θ̃n; Xi))(5`(θ̃n; Xi))

t is also a consistent

estimator of I(θ0), since 5`(θ̃n; Xi) →p 5 `(θ0; Xi).

(c) Often easiest is to use the second derivatives:−n−1
n∑

i=1

∂2`(θ; Xi)

∂θj∂θl

 |θ=θ̃n
=

(
n−1Jn(θ̃n)

)

is also a consistent estimator of I(θ0).

(d) If CRLB attained: 5`n(θ) = nI(θ)(θ̂n − θ)

Hence (differentiating), n−1Jn(θ̂n) = I(θ̂n).

5.5.2 The one-step estimator

We want to solve 5`n(θ; X(n)) = 0. This can be hard.

Suppose we have a preliminary estimator θn. Then we

can do one-step Newton-Raphson:

0 = 5`n(θ; X(n)) ≈ 5`n(θn; X(n)) +

 ∂2`n

∂θj∂θl

 |θ=θn
(θ − θn)

Thus, replacing the second derivatives by some consistent

estimator −Î from (a),(b) or (c) above, new θ∗n is

θ∗n = θn + (n
̂

I(θn))−1 5 `n(θn; X(n))

If n1/4(θn − θ0) →p 0 then θ∗n satisfies same Theorem 5.4(ii)

(a) and (b) as θ̃n –see JAW 4.7.
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5.6 Appendix: summary of notation

Notation, definition description, result, etc.

X(n) = (X1, ..., Xn) sample of i.i.d. Xi from pdf f

`n(θ; X(n)) =
∑n

1 log f (Xi; θ) log-likelihood function.

5`(θ; Xi) = (∂ log f(Xi;θ)
∂θj

) contribution of Xi to score

5`n(θ) =
∑n

1 5`(θ; Xi) the score function: deriv. of `n

I(θ) = E(−∂2 log f(Xi;θ)
∂θj∂θl

) In(θ) = nI(θ): Fisher Information

Jn(θ; X(n)) = (− ∂2`n
∂θj∂θl

) observed information

n−1Jn(θ) →p I(θ)

θ0 ∈ Θ ⊂ <k true value of θ

5`n(θ) = 0 the likelihood equation

θ̂n; MLE maximizes `n(θ) in Θ

θ̃n root of the likelihood eqn

Zn ≡ n−
1
2 5 `n(θ0; X

(n)) Zn →d N(0, I(θ0))

Dn = I−1(θ0)Zn Dn →d D ∼ Nk(0, I
−1(θ0))

˜̀(θ0; X) ≡ I−1(θ0)5 `(θ0; X) n−
1
2
∑n

i=1
˜̀(θ0; Xi) = I−1(θ0)Zn

∆n ≡ n
1
2(θ̃n − θ0) (∆n −Dn) →p 0

˜̀
n(θ,X(n)) =

∑n
i=1

˜̀(θ; Xi) influence fn for θ
˜̀
q(θ; X(n)) = (5q(θ))t ˜̀

n(θ; X(n)) influence fn for q.
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