Chapter 4: Estimation and Information (JAW Ch 3)

4.1 CRLB: one-dimensional real parameter (JAW 3.7-10;
Severini 3.6)

(i) (a) X ~ Py on (X A), 8 € © CR.
(b) Density fy = % 3 where p is o-finite on X.
(c) T=T(X) estimates ¢(0); Ey|T(X)| < oo
(d) b(0) = E¢(T)—q(#) = bias of T
(e) ¢(0) 3
(ii) Suppose: (a) © is an open subset of R
(b) 3B, u(B) =0 s.t. for z ¢ B Y80 3 v
(c) A=A{z: fy(x) =0} does not depend on 0
(d) 1(0) = Eo(((j(X))?) > 0 where (j(z) = Zlog fy(z) is the
Score function for 6.
1(0) is the Fisher Information for 6.
(e) Jfo(x)du(x) and JT(x)fp(zr)du(r) can both be
differentiated w.r.t. § under the integral sign.
(iii) Then, if (ii), vary(T(X)) > (q( )+ 0(0)*/1(0) VO €O
and equality holds V6 iff 3k(0) s
(p(X) = KO)T(X) = q(6) — (0 )) a.e. (p).
(iv) Proof: Ey(f3(X)) =0 so 1(6) = Ey((£5(X))?) = var(f5(X))
(¢'(0) + V(0)) = Cov(T(X),4y(X)) and result follows from
Cauchy-Schwarz, with equality iff /(X)) = k(0)(T(X)+c(0));
taking expectations gives c(0) = —Ey(T) = —q(0) — b(0).
(v) If also J fy(x)du(x) can be differentiated twice under the
integral
82

[(0) = —E(z5logfo(X)) = —E((X))

Prf: Differentiating again, gives Ey(¢) (X)) + E((£,(X))?) =0
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4.2 Assumption verification, and notes

(i) Assumption (ii)(e) can be the hard one to check. It
holds for exponential families: see 2.1 and Sev. P. 81-82.
More generally: using ’ to denote 2, if X'(w,6) 3V a.e.(u)
and | X'(w,0)] < Y(w) VA, and Y integrable, then DCT will
give that (Jo X (w,0)du) = jo X'(w, 0)dp.

(ii) If b(0) = 0 and vary(T) = (¢'(0))*/1(9), T is MVUE of ¢(0),
and (X)) =k(0)(T(X) — q(0)). Conversely, if ¢,(X) = ... etc.
(iii) 7 is MVUE of ¢(0) iff aT + b is MVUE of aq(f) + b
but if 7 non-linear, A unbiased estimator achieving CRLB
for w(q(f)).

(iv) T is MVUE of ¢q(#) = T is MLE of ¢(6).

(v) T a MVUE of ¢(¢) =

var(T') = ¢'(6)° /E((5(X))* = ¢'(0)*/ (k(6)*(vary(T'))

so var(T') = |¢'(0)/k(0)| and 1(0) = ¢'(0)*/var(T) = |q'(0)k(0)].
(vi) Example: TPE P. 118. JAW 3.8-9

X, i.i.d. Poisson mean 6 > 0.

(a) Conditions (a)-(d) are trivial. For (e) E(T(X™)) =
St t(z™) e=99%i / (1x,!), which is absolutely cgt power
series in 0 if E(|T(X™|) < oo, so can diffte term-by-term.
(b) ly(X™) = n(X, —0)/0. X, attains lower bound for

q(0) =6, and var(X,) =0/n = CRLB. I(0) =n/6.

(c) For, ¢(0) = 6, CRLB = 46°/n

E(X,”) =6>+60/n, so T* = X,” — X,,/n is unbiased for ¢* and
is min variance (by Lehmann-Scheffé & Rao-Blackwell).
var(T*) = 40% /n+20%*/n> > CRLB, but — CRLB as n — oo.
(Note X, ~ n~'P(nf): See TPE P.30 for Poisson moments).



4.3 Examples

(i) Information in an n-sample
If X and Y are independent;

GXY) = Doa(o(X.Y)) = olow fo(X) + log (Y )

= Ly(X) + £y(Y)

These two terms are independent, each mean 0, so
E()(X,Y)?) = E(()( X))+ E(y(Y)?) or Ixy(0) = Ix(0)+ Iy(0)
For X" = (X,,....X,), X; i.i.d.; I,(0) = nL,(0).

(ii) Location parameter: JAW 3.9, TPE P.119

folz) = g(x — 0) for known g, li(z) = —(¢'(z —0)/g(z —0))
1(6) = E((6(X))?) = 1400dy = 1,

For n-sample: [,,(0) =nl,, EQ(T(X( )) =0 = vary(T},) > 1/nl;
varg(n2 (T, — 0)) > 1/I,.

(iii) Scale parameter: JAW3.9, TPE P.119

folx) = 0""g(x/0), ly(x) = 6 (=1—(x/0)(g'(x/0)/9(x/0)))

1(0) =072 1(=1—yd'(y)/9(y))g(y)dy = 6°I}.
For n—sample L(0) = nl,, By(T(X™)) = 0 = vary(T,) >

0% /nl}; Varg(m( —0)/0) > 1/1I7.
(iv) Reparametrization: ¢ = ¢)(f) a 1-1 transformation.
Then (,,(X) = a¢(10gfe( ) = (W((0) " (X)

I() = (¢((0 ))~21(0).
But also ( (0)+b(0)) = (d(0)+0b'(0))/v'(9), so the CRLB

is unchanged — as should be so!!



4.4 Other lower bounds

(i) Back to Cauchy-Schwarz:

Suppose FEy4(T?%) < oo and ¥(X;#) any function with 0 <
Eo(V(X,0)%) < oo, then vary(T) > (Covy(T,1)))*/vary(¥). In
general, this is not useful since the r.h.s. involves T'.

(ii) Blyth’s Theorem

(a) Covy(T, V) depends on T only through Ey(T) iff

(b) Covy(V,0) =0V V s.t. Ey(V) =0 V0 and Ey(V?) < oc.
Proof: Suppose (b), and let Ey(T) = Ey(T5). Consider V =
Ty — Ts. So Cov(Ty, V) = Cov(T3, V), Hence (a).

Suppose (a), and take V with Ey(V)=0V0. So Eo(T+V) =
Eg(T). So Covy(T + V,¥) = Covy(T, V). Hence (b).

(iii) Cor 1: V(X,0) = ¢,(X), satisfies Covy(V, V) = (Ep(V))’ for
any V, hence (b), hence also (a), and Covy(T, V) = (E¢(T))’,
giving the CRLB.

(iv) Cor 2: Hammersley-Chapman-Robbins Inequality
Assume fy(z) >0 Ve € X. Let V(x,0) = (forn(z)/fo(x) —1).
So Ey(V(X,0)) =0VA and for V s.t. (b) Cov(V, V) = Ey(VV) =
E9+A<V> — EQ(V) = (0 and COV(T7 \I') = E9+A(T) — EQ(T), so VA

fora(X) i
foX) 1)

(v) Cor 3: with appropriate differentiability, regularity
etc., let A — 0 in Cor 2, and we get back to CRLB

(Eo(T))")?/1(6).

() 2 (Eoea(T) = EolT)P/Ea



4.5 Multiparameter CRLB: © Cc ®*. (Sev. P90-91).

(i) Theorem (Vector version of Cauchy-Schwarz/Blyth)
For any unbiased estimator T of ¢(f), and any functions
U,(X,0) with Eg(V#(X,0)) < oo, let C;; = Covy(V;, V), and
v; = Cov(T, ;). Then (a) var(T) > ~'C 1.
(b) The lower bound depends on T only through ¢(0)
provided Cov(V, V) =0 VV s.t. Eg(V) =0 V0 and Ey(V?) < oo.
(ii) First, let W = (W4, ..., W) and T be r.vs with finite 2nd
moments. Let p(a) = p(a'W,T) < 1. We show in (iv),(v)
that sup,(p?(a)) = ~'C~ly/var(T), where C' = var(W) and
v = Cov(W,T).
(iii) sup,(p?(a)) < 1, so putting W = U gives theorem part
(a). Then (b) follows exactly as in Blyth’s theorem.
(iv) Suppose C = var(WW) is positive definite, so C' = AA’,
with A non-singular. Then

e = (C@WT?
var(a'W )var(T) (a'Ca)var(T)
and (a'7)? = (! AA"17)? = ((Ala)/(A~1q))
< (a'AA'a).(/'/(AH A YY) = (a'Ca)(y'C~1y) gives result.
(v) Note the sup is attained iff A'a oc A~'v; that is a oc C™ 1.

(vi) Under multidimensional analogues of 4.1 (ii) (a)-
(e), var(T) > o'(I(0)) 'a where a = vE¢(T (X)), and I(0) =
Eo(Vlo(X) v lo(X)").

(vii) Proof: set ¥ = v/y(X), and show Ey(V) = 0, v =
Cov(T, vlp(X)) = VEo(T(X)) = a and C = I(0).

(viii) For a ox C~ ', a'U o< (VEs(T)'I(0) <7 o(X) = £o(X).
This function is known as the efficient influence function
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4.6 Nuisance parameters and submodels (Sev P.93-95)

(i) If Ey(T) = 0, a = ¢, var(T) > (1(0)) e
If EQ(T) = 91, V&l”(T) Z (([(6»_1)11 = (]11—[12]2_21]21)_1 Z (]11)_1,
and = ([11)_1 iff 115 = 0.

(ii) Attaining the bound: For var(T) = ~'C 1y,
(T —Eo(T)) o bp(X) = v (a0)I(0)"" 7 lo(X).
(iii) Exponential families
(-(X) = log(e(m)) + E§:1 7, T;(X) + log h(X).
Vilz) = (T —E(T)) = (T'—7(7))
I(m) = B(TUE)T()) = var(T)
Now o = Cov(T,v/(¢;)) = Cov(T,T —7) = var(T),
so var(T) = I(m) = var(T)I(7)var(T),
or I(1) = (var(T))~ .
(iv) Location-scale families: fj,(z) = o 'g((z —0)/0).
Then /{1 =0~ Ig7 Iy =0~ 2] and [;o = o0~ ny g ()" dy

9(v)
Note I15 =0 if g() is symmetrlc about 0.

(v) Orthogonal parameters (Sev. 3.6.4): 0 = (¢, ¢)

If (¢, ¢) = (D) + (2)(¢), ¥ and ¢ are orthogonal.
Inferences about ¢ and ¢ can be made separately.

If I,4(0) = E(€ul) = —Eg(lyy()) = 0. then 1) and ¢ are
(approx/asymptotically) orthogonal.

(Here and on following page: subscripts on ¢ denote
derivatives.)



4.7 Finding orthogonal parametrization (Severini P.95)

1 is parameter of interest, A a nuisance parameter;
log-likelihood /() \)
Reparametrize as (*(1, @), where A\ = \(¢, ¢), ¢ = o(¢, N).

LON
L0 = G, >a¢
* aA t
OA O OA
So Ijy(:9) = In( Mgz + (Go) In: Mg

For I} ,(1,¢) = 0, (ON/0Y) = — (Lu(, A) ™ pa(@), A).
Can, in principle, be solved to find (many) ¢(u, \).

Example: Weibull dsn: with ¢ the parameter of interest
Fly:,A) = A"y exp(=(Ay)) Lo,00) ()

B 777 (T—7)/A
N PP

so 1) and A\ are not orthogonal. (v = Euler’s const)

To find an orthogonal reparametrization

(OA/OY) = —(1=7)A/¥* or A(¥) = Cexp((1 —7)/¥).

That is C' = exp(log(A) + (v = 1)/¢), so ¢ = g(log(A) + (v —1)/¢)

will work, where g is any smooth function.



4.8 Asymptotic relative efficiency (ARE)

(i) Let 71, and T, be two sequencies of estimators, each
consistent for ¢(¢) and 7;, being based on an n-sample
X, Let ny(n;) be defined s.t. var(Th,,) = var(T},,). Then
the A.R.E. of (Tl,n) to (TZ,n) is 1imn1_>oo ng(nl)/nl.

(ii) Asymptotically Gaussian regular estimators:

If 7T, is a consistent estimator of ¢(f) based on i.i.d

n-sample X, then (T,,) is an asymptotically Gaussian

regular estimator if n%(Tn —q(0)) —4 N(0,72(9)).

(iii) For two Asymptotically Gaussian Regular estimators:
1

1 1 1
var(niTy n,) — 7i, var(niTy,,) = (n1/ng)*var(n3Ts,). For equal

variance, for large ny, (n;/n))m ~ 7¢ or lim(ny/ny) = 73/7¢.

(iv) Example: Suppose X, ..., X, are i.i.d from F(x — 0)
with F(0) = 1/2 and E(X;) = 6. Then X, and M = med(X;)
are both consistent estimators of 6.

Suppose I has density f, f(0) > 0, and var(X;) = 0% < oo.
Then n2(X,—0) —4 N(0,02) and nz(M—0) —, N(0, 1/A(f(0))2).
So the ARE of X,, to M is 1/(40?f(0)?)

(v) Examples (Note scale parameter cancels out)

X, ~ N(0,0%): 0, =X,, var(X;) = 0>, ARE= 7/2.

X, ~DE(0,\): 0, =M, var(X;) = 2)?, ARE =1/2.

X~ U0 = 1,0 + )z var(X;) = ¢7/3, f(0) = (2¢)~, ARE= 3.

(vi) Asymptotic efficiency of asymptotically Gaussian
regular estimators: (when CRLB conditions apply)

If (7),) is consistent for ¢(f) and n%(Tn—q(G)) —q N(0,72(9)),
then 72(0) > (¢'(0))*/1,(f). We define the (absolute)
asymptotic efficiency of (T},) to be (¢'(0)?/(I,(0)7?))

= lim(q(0)*/(1,(0)var(T},)) = lim(q’(H)Q/(Il(9)var(n%Tn)) <1



