Chapter 3: Large Sample Theory (JAW Ch 2)
3.1 Modes of convergence (JAW 2.3, Ferg Ch 1)

(i) Defn: X, — X a.s. if X, (w) - X(w) Vw € A where
P(A%) =0.

(ii) Equivalently (by defn of cgce of functions):

Ve > 0, P(sup,,>, | Xm — X| >¢€) — 0 as n — oo.

(iii) Defn: X,, — X in probability if Ve > 0,

P(| X, — X|>¢€) —0as n— oo.

(iv) Defn: X,, — X in distribution, if the dfs F,, and F' of X,
and X are s.t. F,(r) — F(x) as n — oo for each continuity
point = of F. (F must be a proper df).

(v) Let 0 <r <oo. X;, = X in r th moment if
E(| X, — X|") — 0 as n — oo. (E(X]) and E(X") must 3.)

(vi) A sequence of rvs (X,) is uniformly integrable if
limsup,,_,. E(| X, (| X, > A)) — 0 as A — oo.

(vii) Notation

A: X, — X a.s. P: X, — X in prob.

D: X,, — X in dsn. E,.: X, — X in rth moment
Ag: X,y —, X for subsequence (n')

Ags: Every subsequence (n') contains (n”), X,» — X a.s.

Ul,: |X,|" are uniformly integrable.
B,: |X,| <Y a.s.Vn with E(Y") <



3.2 Convergence implications (JAW 2.4-8, Ferg Ch 1)

(i) A = P (from the defn)

(ii) P = D: let A,(¢) = {| X, — X| > €}

Let Ve > 0, V6 > 0 s.t. P(A,(€)) <V n>ng(e, o)

{X, <z} C{X<zxz+eUAe), Filo)<F(r+e)+6
{X, >z} C {X >zx—€}UA,(e), (1-F,(z)) < (1-F(x—e¢))+0
So F(x—e)— < Fy(x) < F(x+e€)+96.

Taking = a cty pnt of F' and ¢ — 0 gives result.

(iii) Ass & P = Ag

r.h.s: Choose n; st P(A; = {|X,, — X|>2"}) <27" so
P<Uk2m14k> <2x2™—0as m— oo.

Now P = Agg follows similarly. Conversely, if not P, then
there is a subsequence not converging in probability, and
hence not Ag (nor Agg for any subsequence).

(iv) E, = E;for 0 <s<r

Holder’s inequality gives (E(|X,—X|*))'/* < (E(|X,—X|" )"
(v) Vitali’s Theorem (without proof):

If P and E(|X,|") < oo, then UL, iff E, iff E(|X,,|") — E(|X]")
(vi) Note: U, is a little weaker than B,: example

Z ~U(0,1), let X, = (n%/log(1+4n))lj1/me)(Z). Then if a >0,
X, —as. 0, E(X,) — 0, and UI,, for all » > 0. BUT B, does
not hold for any r > 0.

(vii) E, = P = { E, provided B,} (for any r > 0)

For L.h.s: P(|X, — X| > ¢) < E(|X,, — X|")/€".

For r.h.s., see (v), (vi).



3.3 Skorokhod theorems (JAW 2.13)

(i) Recall that any df F' has at most a countable number
of discontinuity points. Ditto F~!.

(ii) For any df F, define F~!(u) = inf{x; F(z) > u}

(iii) If X has cts df F, FI(X) ~ U(0,1). For any F,
P(F(X) <t) <t with equality iff ¢ is in the range of F.
(a) F& Fletsatt: PV=F(X)<t)=FF )=t
(b) F(x —¢) = F(x) =to: F(F~(t)) =t as in (a),

(but note F"Y(F(z)) = Fl(t)) <z — e < 1)

(c)t &€ range(F): F~(t) = zg, F(zg) > t; i.e. F(F7L(t) >t

(iv) Inverse Transformation Theorem:

Let V ~ U(0,1), X = F}(V). Then X has df F.

(ie. VLS F(z)if X <z,s0 P(X <z)=P(V < F(x)) = F(x).)
Proof: V< F(z) = X = FY(V) <z by defn !
FlV)=X<az=V<Flx+e),Ve>0ie. V< F().

(v) Skorokhod Theorem: Suppose X, —; X,
then 3 X', X* s.t. X5 —u X% X =g X, X* =4 X.

Proof: Let U ~ U(0,1), F,, be df of X,,, F of X
Let X* = F-Y(U), X* = F-Y(U). Clearly X* =4 X,,, X* =4 X.

Now, let ¢ be a continuity point of F~!, 2 = F~(), and z,y
be cty pnts of F', x < z < y.

Then F(z) <t for x < z, so F;(t) > z for large enough n.
Also F(y) >t for z <y, so F,!(t) <y for large enough n.
Now let = 1 2, y | 2z through cty points of F'.

So F,'(t) — F7'(t) except at a countable number of ¢,

which has Lebesgue measure 0. i.e. X —,, X".

Note: Versions of Skorokhod hold also in R~ but
multivariate monotonicity is not so simple.
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3.4 Classical limit theorems (JAW 2.11, 14, Ferg 4, 5, 6)
(i) WLLN: X; i.i.d with mean p (E|X;| < o), X, —, p.

(ii) SLLN: X, i.i.d with mean u (E|X;| < 00), X,, —us u-
(iii) Multivariate CLT: X; i.i.d. in R®* with mean E(X,) = u
and var(X;) =X = E(X; — u)(X; — p) (so E(X{X;) < 00), then
n2(X, — 12) =4 Ni(0,5)

(iv) Other CLTs: Liapouvov and Lindeberg-Feller
conditions — see JAW 2.11, Ferg, P27-28.

(v) Continuous mapping/Mann-Wald Theorem
Suppose g : R — R is continuous a.s.(Px) then
X, =t X = g(X,) —¢g(X) where t is a.s., p or d.

(vi) Cramér-Wold device: X, € R

X, =g X iff X, —4d' X Vac R

(vii) Helly-Bray Theorem: If X, —; X and g bounded and
cts a.s. Py then E(¢(X,)) — E(¢(X)) as n — oo.

(viii) Slutsky’s Thm: simple case

A, —,a, B, —,b, Z, - X = (A, Z,+ B,) —4(aX +Db)
(ix) Slutsky corollary: simple ¢’ Theorem (/-method)

If X is a proper r.v. and g is ctsly diffble at b, a,, — o0
an(Zy —b) =¢ X = an(g(Zn) — g(b)) —a g'(0)X

(x) Slutsky’s Thm (multiparameter version)

g:RF =R, be R, vg = (gbgi) J cts. Z,, X are r.vs in R*,
ap — 00, a(Zy—b)—aX = an(g(Zn) —g(b) —a (V9)'X
(xi) Corollary: If ¢ has cts partial deriv at b, a, — o
and a,(Z,—b) —¢ X ~ Ni(0,Y) where a, — oo then a,(9(Z,)—
9b) =a (VeI X ~ N0, (V9 E(V9))



3.5 Empirical processes, Brownian Bridge (JAW 2.16-18)

(i) Let U;, i = 1,2,... be i.i.d. U(0,1). Define their empirical
dsn fn (edf) G,(t) =n "t I{U; < t}.
Note nG,,(t) ~ Bin(n,t): E(G,(t)) =t, var(G,(t)

(ii) The uniform empirical process is U,(t) =n

t(1 —1t)/n.
(Gn(t) —1).
(iii) E(U,(t)) = 0, var(U,(t)) = t(1 — t), and Cov(U,(t), U,(s)) =
nCov(G,(t), Gu(s)) = Cov(I{U; < s}HA{U; <t}) = min(s,t) — st.
(iv) A Gaussian process B(t), 0 < t < 1, with this mean
and covariance is Brownian Bridge.
By the multivariate CLT
(Un(t1), .-es Unltr)) —a (B(th), ..., B(tk)) ~ Ni(0, %)
where o;; = min(t;,t;) — t;t;, for any finite k.
(v) Let X;, i = 1,2,... be i.i.d. with cdf F. Their edf is
F,(x) =n"'s", I{X; <z}, and the corresponding empirical
process is n%(Fn(x) — F(x)).
(vi) Consider X/ = F1(U;) ~ F, and X; < z iff U; < F(x)
a.s. So Fi(z) =G,(F(x)), —o0 < x < 0.
(vii) Then ni(F, — F) =, n2(F' — F) =,

n2(Gu(F) ~ F) = Uy(F) —a B(F)
where cgce is of the finite-dimensional dsns.

D=

(viii) Glivenko-Cantelli Theorem: for any F,

sup, |Fn(z) — F(x)| =45 0 as n — oc.

Proof: sup, |Fu(x) — F@) =4 s, |Fi(z) — Fla)| =
sup, |Gn(F(x)) — F(z)| < sup, |Gp(t) — t|. So suffices to show
for G, and 0 < t < 1. Now split (0,1) into bits I, =
((j — 1)4,50) size 6 = M~! for large M, and look at the
max; supc, |Gn(t) — ¢, and use G,(¢) incr, and G,(j6) —.s. J0.



3.6 Limit theory for Uniform sample quantiles (JAW 2.28-
30)

(i) Let Uy i = 1,...,n be order statistic of n-sample of U(0, 1)
G,'(t) =inf{u: G,(u) >t} = Uy for (i —1)/n <t <i/n.

(ii) The uniform quantile function is G, !, and the uniform
quantile process is Q,(t) = n%(G_l(t) —1).

(iif) supgoycr |G, (8) —t] < supgoyeq [Gu(t) —t|+(1/n) (picture)
which —, 0 by Glivenko-Cantelli.

(iv) n2(Uy —p) —a N(0,p(1 — p)) if n2((i/n) —p) — 0.
(a) Uy <w iff (#U; <w) > iff B(n,w) > i prob (approx)

P(N(nw,nw(1 —w)) > i) = &((nw —i)/y/nw(l — w))
P(n%(U(i) —p) < $) = P(U(Z') < :Cn_% +p) ~

o| TEEFRTV ) o g(—a/\p(l—p))

/np(1 = p) + O(nt)
This proof can be made rigorous.
(b) (U(l), ....,U(n)) =d (Wj/Wn+1;j = 1, ,n) where Wj =
>4_1 Vi, where Vi, ....,V,,1 are i.i.d. exponentials mean 1.
(See Hwk 5/6 7). This gives easy proof for each U;, and
a neater proof for joint dsn of the (U;)).
(c) Using empirical processes — see JAW notes.

(v) For the finite-dimensional dns
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(GLM(ty) = t);5 =1, .., k) —a Ni(0,%)

(n2(G,
where 0jj = min(ti, tj) — titj.

Or, if Qn(t) = n2(G: () — t), sup; |Q.(t) — B(t)| —us 0 where
B() is the Brownian Bridge process.



3.7 Quantiles of a general dsn (Ferg 13)

(i) F(z) =n"tx, [{X; <z}, where X1, ..., X, are i.i.d. ~ F.
Fo(z) =45 E(I{X; <z}) = F(z) by SLLN (see 3.5 (v)).
(if) F,'(t) = inf{z : Fy(z) >t} = X on (i —1)/n < t < i/n.
By inverse transformation thm

(F_l(U(l)), ...... ,F_l(U(n))) = (X(l),...,X(n))
or F7 G 1)) =4 F;1(), at least for finite dim dsns.
(iii) Now from 3.6 (iii),
SUPg<i<p Gt —t] < SUPp<t<1 G N t) —t] —as 0, so if F!

is continuous on [a, b]

sup [, (t) = F7H(t)] =¢ sup |[F7H(G, (1) = FH(t)] —as. 0

a<t<b a<t<b

(iv) From 3.6 (iv), n2(G,'(p) = p) —a N(0,p(1—p)),
So, if F' is absolutely continuous, with pdf f = F’, and
f(F~(p)) >0

n2(F(p) — F~'(p)) —a Q'(p).N(0,p(1 - p))

where Q = F1, so Q'(p) = 1/f(F~(p))
”Proof”: linearize as for ¢’ theorem, or J-method.
(v) In general, for the finite-dimensional dns of Brownian

Bridge process B(t):

(EHt) = F7H ), 0 = 1,0 k) —a (Q'(t))B(t));5 =1,.... k)

”Proof”’: linearize as for multivariate ¢ theorem, or §-
method.
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