Chapter 3: Large Sample Theory (JAW Ch 2)

3.1 Modes of convergence (JAW 2.3, Ferg Ch 1)

(i) Defn: $X_n \to X$ a.s. if $X_n(\omega) \to X(\omega) \quad \forall \omega \in A$ where $P(A^c) = 0$.

(ii) Equivalently (by defn of cgce of functions):

 $\forall \epsilon > 0, \ P(\sup_{m \ge n} |X_m - X| > \epsilon) \to 0 \text{ as } n \to \infty.$

(iii) Defn: $X_n \to X$ in probability if $\forall \epsilon > 0$, $P(|X_n - X| > \epsilon) \to 0$ as $n \to \infty$.

(iv) Defn: $X_n \to X$ in distribution, if the dfs F_n and F of X_n and X are s.t. $F_n(x) \to F(x)$ as $n \to \infty$ for each continuity point x of F. (F must be a proper df).

(v) Let $0 < r < \infty$. $X_n \to X$ in r th moment if

 $E(|X_n - X|^r) \to 0 \text{ as } n \to \infty.$ ($E(X_n^r) \text{ and } E(X^r) \text{ must } \exists.$)

(vi) A sequence of rvs (X_n) is uniformly integrable if $\limsup_{n\to\infty} \mathbb{E}(|X_n|I(|X_n| \ge \lambda)) \to 0 \text{ as } \lambda \to \infty.$

(vii) Notation

A: $X_n \to X$ a.s. D: $X_n \to X$ in dsn. A_S: $X_{n'} \to_{a.s.} X$ for subsequence (n')A_{SS}: Every subsequence (n') contains (n''), $X_{n''} \to X$ a.s.

 \mathbf{UI}_r : $|X_n|^r$ are uniformly integrable.

B_r: $|X_n| \leq Y$ a.s. $\forall n$ with $E(Y^r) < \infty$

3.2 Convergence implications (JAW 2.4-8, Ferg Ch 1)

(i) $A \Rightarrow P$ (from the defn)

(ii) $\mathbf{P} \Rightarrow \mathbf{D}$: let $A_n(\epsilon) \equiv \{|X_n - X| > \epsilon\}$ Let $\forall \epsilon > 0$, $\forall \delta > 0$ s.t. $P(A_n(\epsilon)) < \delta \forall n > n_0(\epsilon, \delta)$ $\{X_n \le x\} \subseteq \{X \le x + \epsilon\} \cup A_n(\epsilon), \quad F_n(x) \le F(x + \epsilon) + \delta$ $\{X_n > x\} \subseteq \{X > x - \epsilon\} \cup A_n(\epsilon), \quad (1 - F_n(x)) \le (1 - F(x - \epsilon)) + \delta$ So $F(x - \epsilon) - \delta \le F_n(x) \le F(x + \epsilon) + \delta$. Taking x a cty pnt of F and $\epsilon \to 0$ gives result.

(iii) $\mathbf{A}_{SS} \Leftrightarrow \mathbf{P} \Rightarrow \mathbf{A}_{S}$

r.h.s: Choose n_k st $P(A_k \equiv \{|X_{n_k} - X| > 2^{-k}\}) < 2^{-k}$ so $P(\bigcup_{k \ge m} A_k) < 2 \times 2^{-m} \to 0$ as $m \to \infty$.

Now $P \Rightarrow A_{SS}$ follows similarly. Conversely, if not P, then there is a subsequence not converging in probability, and hence not A_S (nor A_{SS} for any subsequence).

(iv) $\mathbf{E}_r \Rightarrow \mathbf{E}_s$ for $0 < s \le r$

Holder's inequality gives $(E(|X_n-X|^s))^{1/s} \leq (E(|X_n-X|^r))^{1/r}$

(v) Vitali's Theorem (without proof):

If **P** and $E(|X_n|^r) < \infty$, then UI_r iff E_r iff $E(|X_n|^r) \to E(|X|^r)$

(vi) Note: UI_r is a little weaker than B_r : example $Z \sim U(0,1)$, let $X_n = (n^{\alpha}/\log(1+n))I_{[0,1/n^{\alpha})}(Z)$. Then if $\alpha > 0$, $X_n \rightarrow_{a.s.} 0$, $E(X_n) \rightarrow 0$, and UI_r , for all r > 0. BUT B_r does not hold for any r > 0.

(vii) $\mathbf{E}_r \Rightarrow \mathbf{P} \Rightarrow \{ \mathbf{E}_r \text{ provided } \mathbf{B}_r \}$ (for any r > 0) For l.h.s: $P(|X_n - X| > \epsilon) \leq \mathbb{E}(|X_n - X|^r)/\epsilon^r$. For r.h.s., see (v), (vi).

3.3 Skorokhod theorems (JAW 2.13)

(i) Recall that any df F has at most a countable number of discontinuity points. Ditto F^{-1} .

(ii) For any df F, define $F^{-1}(u) = \inf\{x; F(x) \ge u\}$ (iii) If X has cts df F, $F(X) \sim U(0,1)$. For any F, $P(F(X) \le t) \le t$ with equality iff t is in the range of F. (a) $F \& F^{-1}$ cts at t: $P(V \equiv F(X) \le t) = F(F^{-1}(t)) = t$ (b) $F(x-\epsilon) = F(x) = t_0$: $F(F^{-1}(t)) = t$ as in (a), (but note $F^{-1}(F(x)) = F^{-1}(t_0) \le x - \epsilon < x$) (c) $t \notin range(F)$: $F^{-1}(t) = x_0$, $F(x_0) > t$; i.e. $F(F^{-1}(t)) > t$ (iv) Inverse Transformation Theorem: Let $V \sim U(0, 1)$, $X = F^{-1}(V)$. Then X has df F. (i.e. $V \le F(x)$ iff $X \le x$, so $P(X \le x) = P(V \le F(x)) = F(x)$.) **Proof:** $V \leq F(x) \Rightarrow X \equiv F^{-1}(V) \leq x$ by defn F^{-1} $F^{-1}(V) \equiv X < x \Rightarrow V < F(x + \epsilon), \forall \epsilon > 0$ i.e. V < F(x). (v) Skorokhod Theorem: Suppose $X_n \rightarrow_d X$, then $\exists X_n^*, X^*$ s.t. $X_n^* \rightarrow_{a.s.} X^*, X_n^* =_d X_n, X^* =_d X$. **Proof:** Let $U \sim U(0,1)$, F_n be df of X_n , F of XLet $X_n^* = F_n^{-1}(U)$, $X^* = F^{-1}(U)$. Clearly $X_n^* =_d X_n$, $X^* =_d X$. Now, let t be a continuity point of F^{-1} , $z = F^{-1}(t)$, and x, ybe cty puts of F, x < z < y. Then F(x) < t for x < z, so $F_n^{-1}(t) \ge x$ for large enough n. Also F(y) > t for z < y, so $F_n^{-1}(t) \le y$ for large enough n. Now let $x \uparrow z$, $y \downarrow z$ through cty points of F. So $F_n^{-1}(t) \rightarrow F^{-1}(t)$ except at a countable number of t, which has Lebesgue measure 0. i.e. $X_n^* \rightarrow_{a.s.} X^*$. Versions of Skorokhod hold also in \Re^k - but Note: multivariate monotonicity is not so simple.

3.4 Classical limit theorems (JAW 2.11, 14, Ferg 4, 5, 6)

(i) WLLN: X_i i.i.d with mean μ ($\mathbb{E}|X_1| < \infty$), $\overline{X_n} \rightarrow_p \mu$.

(ii) SLLN: X_i i.i.d with mean μ ($\mathbb{E}|X_1| < \infty$), $\overline{X_n} \rightarrow_{a.s} \mu$.

(iii) Multivariate CLT: X_i i.i.d. in \Re^k with mean $E(X_1) = \mu$ and $var(X_1) = \Sigma = E(X_1 - \mu)(X_1 - \mu)'$ (so $E(X'_1X_1) < \infty$), then $n^{\frac{1}{2}}(\overline{X_n} - \mu) \rightarrow_d N_k(0, \Sigma)$

(iv) Other CLTs: Liapouvov and Lindeberg-Feller conditions – see JAW 2.11, Ferg, P27-28.

(v) Continuous mapping/Mann-Wald Theorem Suppose $g : \Re^k \to \Re$ is continuous a.s. (P_X) then $X_n \to_t X \Rightarrow g(X_n) \to_t g(X)$ where t is a.s., p or d. (vi) Cramér-Wold device: $X_n \in \Re^k$

 $X_n \to_d X$ iff $a'X_n \to_d a'X \quad \forall a \in \Re^k$.

(vii) Helly-Bray Theorem: If $X_n \to_d X$ and g bounded and cts a.s. P_X then $E(g(X_n)) \to E(g(X))$ as $n \to \infty$.

(viii) Slutsky's Thm: simple case $A_n \rightarrow_p a, B_n \rightarrow_p b, Z_n \rightarrow_d X \implies (A_n Z_n + B_n) \rightarrow_d (aX + b)$ (ix) Slutsky corollary: simple g' Theorem (δ -method) If X is a proper r.v. and g is ctsly diffble at b, $a_n \rightarrow \infty$ $a_n(Z_n - b) \rightarrow_d X \implies a_n(g(Z_n) - g(b)) \rightarrow_d g'(b)X$

(x) Slutsky's Thm (multiparameter version) $g: \Re^k \to \Re, b \in \Re^k, \nabla g = (\frac{\partial g}{\partial b_i}) \exists \text{ cts. } Z_n, X \text{ are r.vs in } \Re^k,$ $a_n \to \infty, \quad a_n(Z_n - b) \to_d X \Rightarrow \quad a_n(g(Z_n) - g(b)) \to_d (\nabla g)'X$ (xi) Corollary: If g has cts partial deriv at $b, a_n \to \infty$ and $a_n(Z_n - b) \to_d X \sim N_k(0, \Sigma)$ where $a_n \to \infty$ then $a_n(g(Z_n) - g(b)) \to_d (\nabla g)'X \sim N(0, (\nabla g)'\Sigma(\nabla g))$ 3.5 Empirical processes, Brownian Bridge (JAW 2.16-18)

(i) Let U_i , i = 1, 2, ... be i.i.d. U(0, 1). Define their empirical dsn fn (edf) $G_n(t) = n^{-1} \sum_{i=1}^n I\{U_i \leq t\}$. Note $nG_n(t) \sim Bin(n, t)$: $E(G_n(t)) = t$, $var(G_n(t)) = t(1-t)/n$.

(ii) The uniform empirical process is $U_n(t) \equiv n^{\frac{1}{2}}(G_n(t) - t)$.

(iii) $E(U_n(t)) = 0$, $var(U_n(t)) = t(1-t)$, and $Cov(U_n(t), U_n(s)) = nCov(G_n(t), G_n(s)) = Cov(I\{U_i \le s\}I\{U_i \le t\}) = min(s, t) - st$.

(iv) A Gaussian process B(t), 0 < t < 1, with this mean and covariance is Brownian Bridge.

By the multivariate CLT

$$(U_n(t_1), \dots, U_n(t_k)) \rightarrow_d (B(t_1), \dots, B(t_k)) \sim N_k(0, \Sigma)$$

where $\sigma_{ij} = \min(t_i, t_j) - t_i t_j$, for any finite k.

(v) Let X_i , i = 1, 2, ... be i.i.d. with cdf F. Their edf is $F_n(x) = n^{-1} \sum_{i=1}^n I\{X_i \leq x\}$, and the corresponding empirical process is $n^{\frac{1}{2}}(F_n(x) - F(x))$.

(vi) Consider $X_i^* = F^{-1}(U_i) \sim F$, and $X_i^* \leq x$ iff $U_i \leq F(x)$ a.s. So $F_n^*(x) = G_n(F(x)), -\infty < x < \infty$.

(vii) Then
$$n^{\frac{1}{2}}(F_n - F) =_d n^{\frac{1}{2}}(F_n^* - F) =_d n^{\frac{1}{2}}(G_n(F) - F) \equiv U_n(F) \rightarrow_d B(F)$$

where cgce is of the finite-dimensional dsns.

(viii) Glivenko-Cantelli Theorem: for any F, $\sup_{x} |F_{n}(x) - F(x)| \rightarrow_{a.s.} 0$ as $n \rightarrow \infty$.

Proof: $\sup_x |F_n(x) - F(x)| =_d \sup_x |F_n^*(x) - F(x)| =$ $\sup_x |G_n(F(x)) - F(x)| \le \sup_t |G_n(t) - t|$. So suffices to show for G_n and 0 < t < 1. Now split (0,1) into bits $I_j =$ $((j-1)\delta, j\delta)$ size $\delta = M^{-1}$ for large M, and look at the $\max_j \sup_{t \in I_j} |G_n(t) - t|$, and use $G_n(t)$ incr, and $G_n(j\delta) \to_{a.s.} j\delta$. 3.6 Limit theory for Uniform sample quantiles (JAW 2.28-30)

(i) Let $U_{(i)}$ i = 1, ..., n be order statistic of *n*-sample of U(0, 1) $G_n^{-1}(t) = \inf\{u : G_n(u) \ge t\} = U_{(i)}$ for $(i-1)/n < t \le i/n$.

(ii) The uniform quantile function is G_n^{-1} , and the uniform quantile process is $Q_n(t) = n^{\frac{1}{2}}(G_n^{-1}(t) - t)$.

(iii) $\sup_{0 \le t \le 1} |G_n^{-1}(t) - t| \le \sup_{0 \le t \le 1} |G_n(t) - t| + (1/n)$ (picture) which $\rightarrow_{a.s.} 0$ by Glivenko-Cantelli.

(iv) $n^{\frac{1}{2}}(U_{(i)}-p) \to_d N(0, p(1-p))$ if $n^{\frac{1}{2}}((i/n)-p) \to 0$. (a) $U_{(i)} \leq w$ iff $(\#U_j \leq w) \geq i$ iff $B(n,w) \geq i$ prob (approx)

$$\begin{split} P(N(nw, nw(1-w)) &\geq i) &= \Phi((nw-i)/\sqrt{nw(1-w)}) \\ P(n^{\frac{1}{2}}(U_{(i)}-p) \leq x) &= P(U_{(i)} \leq xn^{-\frac{1}{2}}+p) \approx \\ \Phi\left(\frac{n^{\frac{1}{2}}x + np - i}{\sqrt{np(1-p)} + O(n^{\frac{1}{2}})}\right) &\approx \Phi(-x/\sqrt{p(1-p)}) \end{split}$$

This proof can be made rigorous.

(b) $(U_{(1)}, ..., U_{(n)}) =_d (W_j/W_{n+1}; j = 1, ..., n)$ where $W_j = \sum_{k=1}^{j} V_k$, where $V_1, ..., V_{n+1}$ are i.i.d. exponentials mean 1. (See Hwk 5/6 ?). This gives easy proof for each $U_{(j)}$, and a neater proof for joint dsn of the $(U_{(j)})$.

(c) Using empirical processes – see JAW notes.

(v) For the finite-dimensional dns

$$(n^{\frac{1}{2}}(G_n^{-1}(t_j) - t_j); j = 1, ..., k) \rightarrow_d N_k(0, \Sigma)$$

where $\sigma_{ij} = \min(t_i, t_j) - t_i t_j$. Or, if $Q_n(t) = n^{\frac{1}{2}}(G_n^{-1}(t) - t)$, $\sup_t |Q_n(t) - B(t)| \rightarrow_{a.s.} 0$ where B() is the Brownian Bridge process.

3.7 Quantiles of a general dsn (Ferg 13)

(i) $F_n(x) = n^{-1} \sum_{i=1}^n I\{X_i \leq x\}$, where $X_1, ..., X_n$ are i.i.d. $\sim F$. $F_n(x) \rightarrow_{a.s.} \mathbb{E}(I\{X_i \leq x\}) = F(x)$ by SLLN (see 3.5 (v)). (ii) $F_n^{-1}(t) \equiv \inf\{x : F_n(x) \geq t\} = X_{(i)}$ on $(i-1)/n < t \leq i/n$. By inverse transformation thm

$$(F^{-1}(U_{(1)}), \dots, F^{-1}(U_{(n)})) =_d (X_{(1)}, \dots, X_{(n)})$$

or $F^{-1}(G_n^{-1}()) =_d F_n^{-1}()$, at least for finite dim dsns. (iii) Now from 3.6 (iii), $\sup_{a \le t \le b} |G_n^{-1}(t) - t| \le \sup_{0 \le t \le 1} |G_n^{-1}(t) - t| \rightarrow_{a.s.} 0$, so if F^{-1} is continuous on [a, b]

$$\sup_{a \le t \le b} |F_n^{-1}(t) - F^{-1}(t)| =_d \sup_{a \le t \le b} |F^{-1}(G_n^{-1}(t)) - F^{-1}(t)| \to_{a.s.} 0$$

(iv) From 3.6 (iv), $n^{\frac{1}{2}}(G_n^{-1}(p)-p) \rightarrow_d N(0, p(1-p))$, So, if F is absolutely continuous, with pdf f = F', and $f(F^{-1}(p)) > 0$

$$n^{\frac{1}{2}}(F_n^{-1}(p) - F^{-1}(p)) \rightarrow_d Q'(p).N(0, p(1-p))$$

where $Q = F^{-1}$, so $Q'(p) = 1/f(F^{-1}(p))$ "Proof": linearize as for g' theorem, or δ -method.

(v) In general, for the finite-dimensional dns of Brownian Bridge process B(t):

$$(n^{\frac{1}{2}}(F_n^{-1}(t_j) - F^{-1}(t_j)), j = 1, ..., k) \rightarrow_d (Q'(t_j)B(t_j); j = 1, ..., k)$$

"Proof": linearize as for multivariate g' theorem, or δ -method.