
Chapter 3: Large Sample Theory (JAW Ch 2)

3.1 Modes of convergence (JAW 2.3, Ferg Ch 1)

(i) Defn: Xn → X a.s. if Xn(ω) → X(ω) ∀ω ∈ A where

P (Ac) = 0.

(ii) Equivalently (by defn of cgce of functions):

∀ε > 0, P (supm≥n |Xm −X| > ε) → 0 as n →∞.

(iii) Defn: Xn → X in probability if ∀ε > 0,

P (|Xn −X| > ε) → 0 as n →∞.

(iv) Defn: Xn → X in distribution, if the dfs Fn and F of Xn

and X are s.t. Fn(x) → F (x) as n → ∞ for each continuity

point x of F . (F must be a proper df).

(v) Let 0 < r < ∞. Xn → X in r th moment if

E(|Xn −X|r) → 0 as n →∞. (E(Xr
n) and E(Xr) must ∃.)

(vi) A sequence of rvs (Xn) is uniformly integrable if

lim supn→∞ E(|Xn|I(|Xn| ≥ λ)) → 0 as λ →∞.

(vii) Notation

A: Xn → X a.s. P: Xn → X in prob.

D: Xn → X in dsn. Er: Xn → X in rth moment

AS: Xn′ →a.s. X for subsequence (n′)

ASS: Every subsequence (n′) contains (n′′), Xn′′ → X a.s.

UIr: |Xn|r are uniformly integrable.

Br: |Xn| ≤ Y a.s.∀n with E(Y r) < ∞
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3.2 Convergence implications (JAW 2.4-8, Ferg Ch 1)

(i) A ⇒ P (from the defn)

(ii) P ⇒ D: let An(ε) ≡ {|Xn −X| > ε}
Let ∀ε > 0, ∀δ > 0 s.t. P (An(ε)) < δ ∀ n > n0(ε, δ)

{Xn ≤ x} ⊆ {X ≤ x + ε} ∪ An(ε), Fn(x) ≤ F (x + ε) + δ

{Xn > x} ⊆ {X > x−ε}∪An(ε), (1−Fn(x)) ≤ (1−F (x−ε))+δ

So F (x− ε)− δ ≤ Fn(x) ≤ F (x + ε) + δ.

Taking x a cty pnt of F and ε → 0 gives result.

(iii) ASS ⇔ P ⇒ AS

r.h.s: Choose nk st P (Ak ≡ {|Xnk
−X| > 2−k}) < 2−k so

P (∪k≥mAk) < 2× 2−m → 0 as m →∞.

Now P ⇒ ASS follows similarly. Conversely, if not P, then

there is a subsequence not converging in probability, and

hence not AS (nor ASS for any subsequence).

(iv) Er ⇒ Es for 0 < s ≤ r

Holder’s inequality gives (E(|Xn−X|s))1/s ≤ (E(|Xn−X|r))1/r

(v) Vitali’s Theorem (without proof):

If P and E(|Xn|r) < ∞, then UIr iff Er iff E(|Xn|r) → E(|X|r)
(vi) Note: UIr is a little weaker than Br: example

Z ∼ U(0, 1), let Xn = (nα/ log(1 + n))I[0,1/nα)(Z). Then if α > 0,

Xn →a.s. 0, E(Xn) → 0, and UIr, for all r > 0. BUT Br does

not hold for any r > 0.

(vii) Er ⇒ P ⇒ { Er provided Br} (for any r > 0)

For l.h.s: P (|Xn −X| > ε) ≤ E(|Xn −X|r)/εr.

For r.h.s., see (v), (vi).
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3.3 Skorokhod theorems (JAW 2.13)

(i) Recall that any df F has at most a countable number

of discontinuity points. Ditto F−1.

(ii) For any df F , define F−1(u) = inf{x; F (x) ≥ u}
(iii) If X has cts df F , F (X) ∼ U(0, 1). For any F ,

P (F (X) ≤ t) ≤ t with equality iff t is in the range of F .

(a) F & F−1 cts at t: P (V ≡ F (X) ≤ t) = F (F−1(t)) = t

(b) F (x− ε) = F (x) = t0: F (F−1(t)) = t as in (a),

(but note F−1(F (x)) = F−1(t0) ≤ x− ε < x)

(c)t 6∈ range(F ): F−1(t) = x0, F (x0) > t; i.e. F (F−1(t)) > t

(iv) Inverse Transformation Theorem:

Let V ∼ U(0, 1), X = F−1(V ). Then X has df F .

(i.e. V ≤ F (x) iff X ≤ x, so P (X ≤ x) = P (V ≤ F (x)) = F (x).)

Proof: V ≤ F (x) ⇒ X ≡ F−1(V ) ≤ x by defn F−1

F−1(V ) ≡ X ≤ x ⇒ V ≤ F (x + ε),∀ε > 0 i.e. V ≤ F (x).

(v) Skorokhod Theorem: Suppose Xn →d X,

then ∃ X∗
n, X∗ s.t. X∗

n →a.s. X∗, X∗
n =d Xn, X∗ =d X.

Proof: Let U ∼ U(0, 1), Fn be df of Xn, F of X

Let X∗
n = F−1

n (U), X∗ = F−1(U). Clearly X∗
n =d Xn, X∗ =d X.

Now, let t be a continuity point of F−1, z = F−1(t), and x, y

be cty pnts of F , x < z < y.

Then F (x) < t for x < z, so F−1
n (t) ≥ x for large enough n.

Also F (y) > t for z < y, so F−1
n (t) ≤ y for large enough n.

Now let x ↑ z, y ↓ z through cty points of F .

So F−1
n (t) → F−1(t) except at a countable number of t,

which has Lebesgue measure 0. i.e. X∗
n →a.s. X∗.

Note: Versions of Skorokhod hold also in <k– but

multivariate monotonicity is not so simple.
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3.4 Classical limit theorems (JAW 2.11, 14, Ferg 4, 5, 6)

(i) WLLN: Xi i.i.d with mean µ (E|X1| < ∞), Xn →p µ.

(ii) SLLN: Xi i.i.d with mean µ (E|X1| < ∞), Xn →a.s µ.

(iii) Multivariate CLT: Xi i.i.d. in <k with mean E(X1) = µ

and var(X1) = Σ = E(X1−µ)(X1−µ)′ (so E(X ′
1X1) < ∞), then

n
1
2(Xn − µ) →d Nk(0, Σ)

(iv) Other CLTs: Liapouvov and Lindeberg-Feller

conditions – see JAW 2.11, Ferg, P27-28.

(v) Continuous mapping/Mann-Wald Theorem

Suppose g : <k → < is continuous a.s.(PX) then

Xn →t X ⇒ g(Xn) →t g(X) where t is a.s., p or d.

(vi) Cramér-Wold device: Xn ∈ <k

Xn →d X iff a′Xn →d a′X ∀a ∈ <k.

(vii) Helly-Bray Theorem: If Xn →d X and g bounded and

cts a.s. PX then E(g(Xn)) → E(g(X)) as n →∞.

(viii) Slutsky’s Thm: simple case

An →p a, Bn →p b, Zn →d X ⇒ (AnZn + Bn) →d (aX + b)

(ix) Slutsky corollary: simple g′ Theorem (δ-method)

If X is a proper r.v. and g is ctsly diffble at b, an →∞
an(Zn − b) →d X ⇒ an(g(Zn)− g(b)) →d g′(b)X

(x) Slutsky’s Thm (multiparameter version)

g : <k → <, b ∈ <k, 5g = ( ∂g
∂bi

) ∃ cts. Zn, X are r.vs in <k,

an →∞, an(Zn − b) →d X ⇒ an(g(Zn)− g(b)) →d (5g)′X

(xi) Corollary: If g has cts partial deriv at b, an →∞
and an(Zn−b) →d X ∼ Nk(0, Σ) where an →∞ then an(g(Zn)−
g(b)) →d (5g)′X ∼ N(0, (5g)′Σ(5g))
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3.5 Empirical processes, Brownian Bridge (JAW 2.16-18)

(i) Let Ui, i = 1, 2, ... be i.i.d. U(0, 1). Define their empirical

dsn fn (edf) Gn(t) = n−1 ∑n
i=1 I{Ui ≤ t}.

Note nGn(t) ∼ Bin(n, t): E(Gn(t)) = t, var(Gn(t)) = t(1− t)/n.

(ii)The uniform empirical process is Un(t) ≡ n
1
2(Gn(t)− t).

(iii) E(Un(t)) = 0, var(Un(t)) = t(1 − t), and Cov(Un(t), Un(s)) =

nCov(Gn(t), Gn(s)) = Cov(I{Ui ≤ s}I{Ui ≤ t}) = min(s, t)− st.

(iv) A Gaussian process B(t), 0 < t < 1, with this mean

and covariance is Brownian Bridge.

By the multivariate CLT

(Un(t1), ...., Un(tk)) →d (B(t1), ...., B(tk)) ∼ Nk(0, Σ)

where σij = min(ti, tj)− titj, for any finite k.

(v) Let Xi, i = 1, 2, ... be i.i.d. with cdf F . Their edf is

Fn(x) = n−1 ∑n
i=1 I{Xi ≤ x}, and the corresponding empirical

process is n
1
2(Fn(x)− F (x)).

(vi) Consider X∗
i = F−1(Ui) ∼ F , and X∗

i ≤ x iff Ui ≤ F (x)

a.s. So F ∗
n (x) = Gn(F (x)), −∞ < x < ∞.

(vii) Then n
1
2(Fn − F ) =d n

1
2(F ∗

n − F ) =d

n
1
2(Gn(F )− F ) ≡ Un(F ) →d B(F )

where cgce is of the finite-dimensional dsns.

(viii) Glivenko-Cantelli Theorem: for any F ,

supx |Fn(x)− F (x)| →a.s. 0 as n →∞.

Proof: supx |Fn(x) − F (x)| =d supx |F ∗
n (x) − F (x)| =

supx |Gn(F (x)) − F (x)| ≤ supt |Gn(t) − t|. So suffices to show

for Gn and 0 < t < 1. Now split (0, 1) into bits Ij =

((j − 1)δ, jδ) size δ = M−1 for large M , and look at the

maxj supt∈Ij
|Gn(t)− t|, and use Gn(t) incr, and Gn(jδ) →a.s. jδ.
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3.6 Limit theory for Uniform sample quantiles (JAW 2.28-

30)

(i) Let U(i) i = 1, ..., n be order statistic of n-sample of U(0, 1)

G−1
n (t) = inf{u : Gn(u) ≥ t} = U(i) for (i− 1)/n < t ≤ i/n.

(ii) The uniform quantile function is G−1
n , and the uniform

quantile process is Qn(t) = n
1
2(G−1

n (t)− t).

(iii) sup0<t<1 |G−1
n (t)− t| ≤ sup0<t<1 |Gn(t)− t|+(1/n) (picture)

which →a.s. 0 by Glivenko-Cantelli.

(iv) n
1
2(U(i) − p) →d N(0, p(1− p)) if n

1
2((i/n)− p) → 0.

(a) U(i) ≤ w iff (#Uj ≤ w) ≥ i iff B(n, w) ≥ i prob (approx)

P (N(nw, nw(1− w)) ≥ i) = Φ((nw − i)/
√
nw(1− w))

P (n
1
2(U(i) − p) ≤ x) = P (U(i) ≤ xn−

1
2 + p) ≈

Φ

 n
1
2x + np− i√

np(1− p) + O(n
1
2)

 ≈ Φ(−x/
√
p(1− p))

This proof can be made rigorous.

(b) (U(1), ...., U(n)) =d (Wj/Wn+1; j = 1, ..., n) where Wj =∑j
k=1 Vk, where V1, ...., Vn+1 are i.i.d. exponentials mean 1.

(See Hwk 5/6 ?). This gives easy proof for each U(j), and

a neater proof for joint dsn of the (U(j)).

(c) Using empirical processes – see JAW notes.

(v) For the finite-dimensional dns

(n
1
2(G−1

n (tj)− tj); j = 1, ..., k) →d Nk(0, Σ)

where σij = min(ti, tj)− titj.

Or, if Qn(t) = n
1
2(G−1

n (t) − t), supt |Qn(t) − B(t)| →a.s. 0 where

B() is the Brownian Bridge process.
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3.7 Quantiles of a general dsn (Ferg 13)

(i) Fn(x) = n−1 ∑n
i=1 I{Xi ≤ x}, where X1, ..., Xn are i.i.d. ∼ F .

Fn(x) →a.s. E(I{Xi ≤ x}) = F (x) by SLLN (see 3.5 (v)).

(ii) F−1
n (t) ≡ inf{x : Fn(x) ≥ t} = X(i) on (i − 1)/n < t ≤ i/n.

By inverse transformation thm

(F−1(U(1)), ......, F
−1(U(n))) =d (X(1), ..., X(n))

or F−1(G−1
n ()) =d F−1

n (), at least for finite dim dsns.

(iii) Now from 3.6 (iii),

supa≤t≤b |G−1
n (t) − t| ≤ sup0≤t≤1 |G−1

n (t) − t| →a.s. 0, so if F−1

is continuous on [a, b]

sup
a≤t≤b

|F−1
n (t)− F−1(t)| =d sup

a≤t≤b
|F−1(G−1

n (t))− F−1(t)| →a.s. 0

(iv) From 3.6 (iv), n
1
2(G−1

n (p)− p) →d N(0, p(1− p)),

So, if F is absolutely continuous, with pdf f = F ′, and

f (F−1(p)) > 0

n
1
2(F−1

n (p)− F−1(p)) →d Q′(p).N(0, p(1− p))

where Q = F−1, so Q′(p) = 1/f(F−1(p))

”Proof”: linearize as for g′ theorem, or δ-method.

(v) In general, for the finite-dimensional dns of Brownian

Bridge process B(t):

(n
1
2(F−1

n (tj)− F−1(tj)), j = 1, ..., k) →d (Q′(tj)B(tj); j = 1, ..., k)

”Proof”: linearize as for multivariate g′ theorem, or δ-

method.
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