
Chapter 2: Parametric families of distributions

2.1 Exponential families (Severini 1.2)

(i) Defn: A parametric family {Pθ; θ ∈ Θ} with densities

w.r.t. some σ-finite measure of the form

f (x; θ) = c(θ)h(x) exp(
∑k

j=1 πj(θ)tj(x)) −∞ < x < ∞.

(ii) Examples: Binomial, Poisson, Gamma, Chi-squared,

Normal, Beta, Negative Bionomial, Geometric ...

(iii) NOT: Cauchy, t-dsns, Uniform, any where support

depends on θ.

(iv) Note c(θ) depends on θ through {πj(θ)}.
Defn: (π1, ..., πk) is natural parametrization. – defined only

up to linear combinations. We assume vector π is of full

rank – no linear relationship between the πj.

(v) Natural parameter space

Π = {π : 0 <
∫
h(x) exp(

∑k
j=1 πj(θ)tj(x))dx < ∞}

Lemma: Π is convex.

(vi) Thm: For any integrable φ, any π0 in interior of

Π, then
∫
φ(x)h(x) exp(

∑k
j=1 πj(θ)tj(x))dx is cts at π0, has

derivatives of all orders at π0, and can get derivatives by

differentiating under the integral sign.

Cor: With φ ≡ 1, c(π) is cts, diffble, etc.

(vii) Moments: T = (t1(X), ....., tk(X))

Note log f (x; π) = log(h(x)) + log c(π) +
∑k

j=1 πjtj(x).

Also ∂f
∂π = ∂ log f

∂π f .

Differentiating
∫
f (x; π)dx = 1 gives E(T ) = − ∂

∂π(log c(π))

Differentiating again gives var(T ) = − ∂2

∂π2(log c(π))
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2.2 Transformation Group families (Severini 1.3)

(i) Groups G of transformations on <:

Contains identity, closed under inverses, and composition.

(ii) Location:

G = {ga : ga(x) = x + a} x ∈ <, a ∈ <.

Let X ∼ F and Xa = X + a,

Fa(x) = Pr(Xa ≤ x) = Pr(X ≤ (x− a)) = F (x− a).

The set of dsns, for fixed F and for all a ∈ < is a location

family. Examples: Normal, Cauchy, double exponential.

Also Uniform, Exponential, ...

(iii) Scale:

G = {hb : hb(x) = bx} x ∈ <+, b ∈ <+.

Let X ∼ F and Xb = bX,

Fb(x) = Pr(Xb ≤ x) = Pr(X ≤ x/b) = F (x/b).

The set of dsns, for fixed F and for all b ∈ <+ is a scale

family. Examples: exponential, gamma,

(iv) We can combine location and scale: Normal, Cauchy,

logistic, Uniform, .... see also Severini Pp 10-11.

(v) A rather large group family:

Xi i.i.d. with cts df F and support the whole of <.

G = {g : g cts strictly increasing, g(−∞) = −∞, g(∞) = ∞}
Wi = g(Xi), Wi are also i.i.d. with cts df and support the

whole real line. Family consists of all such dsns.

(vi) A group family: G = {gb,c : g(x) = bx1/c, b > 0, c > 0}.
If X is standard exponential: F (x) = 1 − e−x, gb,c(X) has

Weibull dns with density cb−cxc−1 exp((−x/b)c)
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2.3 Sufficiency, minimal sufficiency, and completeness

(Severini 1.5) (THIS IS REVISION ONLY)

(i) Defn: Vector T is sufficient for θ w.r.t. {Pθ; θ ∈ Θ} if

Pθ(X|T (X) = t) does not depend on θ

(ii) Factorization criterion.

T (X) is sufficient for θ iff f (x; θ) ≡ h(x)g(T (X), θ)

(iii) Defn: T(X) is minimally sufficient if it is a function

of every sufficient statistic. Idea: coarsest partition of the

sample space that is sufficient.

Minimal sufficient statistics are essentially unique.

(iv) Likelihood ratio criterion: define

x ∼ x′ iff
f (x; θ1)

f (x; θ2)
=

f (x′; θ1)

f (x′; θ2)
∀ θ1, θ2 ∈ Θ

T is minimal sufficient iff T (x) = T (x′) ⇔ x ∼ x′

(v) Defn: Sufficient statistic T is (boundedly) complete if

for any measurable real-valued (bounded) function g

Eθ(g(T )) = 0 ∀θ ∈ Θ ⇒ Pθ(g(T ) = 0) = 1 ∀θ ∈ Θ

(Completeness provides uniqueness of unbiased

estimators of ξ(θ).)

(vi) Lehmann-Scheffé Thm: for sufficient T

T complete ⇒ T min suff.

(vii) Basu’s Thm: for sufficient T

T complete, V dsn not depending on θ

⇒ ∀Pθ, T, V independent.
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2.4 Vector exponential families

(i) Density on some subset of <n w.r.t. some σ-finite

measure: f (x; θ) = c(θ)h(x) exp(
∑k

j=1 πj(θ)tj(x)) ∀ x ∈ <n

For example: Xi i.i.d. from scalar exponential family ⇒
vector X(n) from (vector) exponential family.

(ii) For Xi i.i.d. from scalar exponential family,

{Tj ≡
∑n

i=1 tj(Xi); j = 1, ..., k} are sufficient. (Use 2.3(ii)).

(iii) {Tj; j = 1, ..., k} is natural sufficient statistic. If there

are no affine relationships among the {tj(x)}, then πj are

identifiable, and family is of full rank. Note the dimension

k of suff. statistic does not depend on n.

(iv) For Xi i.i.d. from scalar exponential family,

{Tj; j = 1, ..., k} is also from a (vector) exponential family.

(v) For Xi i.i.d. from scalar exponential family,

((T1, ..., Tl)|(Tl+1, ..., Tk)) is also from a (vector) exponential

family.

(vi) mT (s) = E(exp(s′T )) = c(π)/c(s + π) where c() is the c-fn

for T = (T1, ..., Tk).

(vii) Provided Π contains an open rectangle in <k

(a) Natural sufficient (T1, ..., Tk) is minimal sufficient

(b) Natural sufficient (T1, ..., Tk) is complete.

(viii) Rank vs dimension: Rank refers to affine

relationships among {πj} or {Tj}. Full rank needed for

minimal sufficiency (see Sev.P.18). Dimension refers

to Π containing open rectangle in <k, and is needed

for uniqueness of Laplace transforms, and hence for

completeness.
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2.5 Multivariate Normal distribution (JAW 1.13, Sev 1.7)

Defn: Y = (Y1, ..., Yn) is jointly Normal with mean 0 if ∃
Z1, ..., Zk i.i.d. N(0, 1) s.t. Y = AZ for some n× k matrix A.

(i) var(Y ) = E(Y Y ′) = E(AZZ ′A′) = AA′ ≡ Σ

(ii) Σ symmetric and non-negative definite ⇒ ∃ n × n

matrix A with Σ = AA′.

(iii) The mgf of Y is mY (s) = E(exp(s′Y )) = E(exp(s′AZ))

= E(exp((A′s)′Z)) = E(
∏

j exp((A′s)jZj)) =
∏

j E(exp((A′s)jZj))

=
∏

j mZj
((A′s)j) =

∏
j exp(1

2((A
′s)j)

2) = exp(1
2

∑
j(A

′s)j)
2)

= exp(1
2(s

′A)(A′s)) = exp(1
2s
′Σs)

(iv) If Σ is non-singular, then A is n× n non-singular, let

Y = µ + AZ, then the pdf of Y ∼ Nn(µ, Σ) is

fY (y) = (2π)−n/2|Σ|−1/2 exp((y − µ)′Σ−1(y − µ))

(v) If Y ∼ Nn(0, Σ) and Σ is partitioned into dimensions k

and n− k as Σij, i, j, = 1, 2, then, using the mgf,

(a) (Y1, ..., Yk) ∼ Nk(0, Σ11).

(b) If Σ12 = 0, Y (1) = (Y1, ..., Yk) is independent of Y (2) =

(Yk+1, ..., Yn).

(c) If (X1, X2)
′ are jointly Normal vectors they are indep,

iff Cov(X1, X2) = 0.

(d) Linear combinations of Normals are Normal.

(vi) If Y ∼ Nn(µ, Σ), and µ′ = (µ(1), µ(2)), Σ partitioned as in

(v), and Σ22 non-singular then (Y (1)|Y (2)) ∼ Nk(µ
(1.2), Σ11.2),

where µ(1.2) = µ(1)+Σ12Σ
−1
22 (Y (2)−µ(2)), Σ11.2 = Σ11−Σ12Σ

−1
22 Σ21.

(vii) Y (1) − E(Y (1)|Y (2)) is independent of Y (2)

Proof: Check the covariance.
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2.6 Chi-squared and non-central chi-sqared dsns (JAW

1.15-1.16)

(i) Defn: If Xi are i.i.d N(0, 1),
∑n

1 X2
i is χ2

n.

(ii) If X ∼ N(0, 1) , Y = X2, mY (s) = E(exp(sX2)) = (1−2s)−1/2

If V ∼ E(1), mV (s) = (1− s)−1

If W ∼ G(α, β), mW (s) = (1− βs)−α

(iii) Hence χ2
n is Gamma, G(n/2, 2).

(iv) Y ∼ Nn(0, Σ) ⇒ Y ′Σ−1Y ∼ χ2
n

(v) If X ∼ N(µ, 1) , Y = X2,

mY (s) = E(exp(sX2) = (1− 2s)−1/2 exp(µ2s/(1− 2s)).

If (W |K = k) ∼ χ2
2k+1, K ∼ P(µ2/2), then mW (s) =

E(E(esW )|K) = E((1−2s)−(2K+1)/2) = (1−2s)−1/2mK(log(1/(1−2s))

which is same if we do the sums right!

(vi) Now let X1 ∼ N(µ, 1) and X2,...,n i.i.d N(0, 1) indep of

X1, Y =
∑n

1 X2
i . Mgf of Y is multiplied by (1− 2s)−(n−1)/2, so

now Y has dsn of W , where W |K ∼ G((2k + n)/2, 2), K as

above.

We define this dsn to be non-central χ2 with n deg freedom

and non-centrality δ = µ2.

(Note: if µ = 0, P (K = 0) = 1, and we regain χ2
n ≡ G(n/2, 2).)

(vii) Now X ∼ Nn(µ, I), then Y = X ′X ∼ χ2
n(δ) with δ = µ′µ.

(viii) X ∼ Nn(µ, Σ), Y = X ′Σ−1X, then Y ∼ χ2
n(δ), where

δ = µ′Σ−1µ.
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