Chapter 2: Parametric families of distributions

2.1 Exponential families (Severini 1.2)

(i) Defn: A parametric family $\{P_{\theta} : \theta \in \Theta\}$ with densities w.r.t. some σ -finite measure of the form

 $f(x; \theta) = c(\theta)h(x) \exp(\sum_{j=1}^k \pi_j(\theta) t_j(x)) \quad -\infty < x < \infty.$

(ii) Examples: Binomial, Poisson, Gamma, Chi-squared, Normal, Beta, Negative Bionomial, Geometric ...

(iii) NOT: Cauchy, t-dsns, Uniform, any where support depends on θ .

(iv) Note $c(\theta)$ depends on θ through $\{\pi_j(\theta)\}.$

Defn: $(\pi_1, ..., \pi_k)$ is natural parametrization. – defined only up to linear combinations. We assume vector π is of full rank – no linear relationship between the π_i .

(v) Natural parameter space $\Pi = \{ \pi : 0 < \int h(x) \exp(\sum_{j=1}^k \pi_j(\theta) t_j(x)) dx < \infty \}$ Lemma: Π is convex.

(vi) Thm: For any integrable ϕ , any π_0 in interior of Π , then $\int \phi(x)h(x) \exp(\sum_{j=1}^k \pi_j(\theta)t_j(x))dx$ is cts at π₀, has derivatives of all orders at π_0 , and can get derivatives by differentiating under the integral sign.

Cor: With $\phi \equiv 1, c(\pi)$ is cts, diffble, etc.

(vii) Moments: $T = (t_1(X), \ldots, t_k(X))$ **Note** $\log f(x; \pi) = \log(h(x)) + \log c(\pi) + \sum_{j=1}^{k} \pi_j t_j(x)$. Also $\frac{\partial f}{\partial \pi} = \frac{\partial \log f}{\partial \pi} f$. Differentiating $\int f(x;\pi)dx = 1$ gives $E(T) = -\frac{\partial}{\partial \pi}(\log c(\pi))$ Differentiating again gives $var(T) = -\frac{\partial^2}{\partial \pi^2}(\log c(\pi))$

2.2 Transformation Group families (Severini 1.3)

(i) Groups G of transformations on \Re : Contains identity, closed under inverses, and composition.

(ii) Location:
\n
$$
\mathcal{G} = \{g_a : g_a(x) = x + a\} \ x \in \mathbb{R}, a \in \mathbb{R}.
$$
\nLet $X \sim F$ and $X_a = X + a$,
\n $F_a(x) = Pr(X_a \le x) = Pr(X \le (x - a)) = F(x - a)$.
\nThe set of dsms, for fixed F and for all $a \in \mathbb{R}$ is a location
\nfamily. Examples: Normal, Cauchy, double exponential.
\nAlso Uniform, Exponential, ...

(iii) Scale:
\n
$$
\mathcal{G} = \{h_b : h_b(x) = bx\} \ x \in \mathbb{R}^+, b \in \mathbb{R}^+.
$$
\nLet $X \sim F$ and $X_b = bX$,
\n $F_b(x) = \Pr(X_b \le x) = \Pr(X \le x/b) = F(x/b).$
\nThe set of dsns, for fixed F and for all $b \in \mathbb{R}^+$ is a scale

family. Examples: exponential, gamma,

(iv) We can combine location and scale: Normal, Cauchy, logistic, Uniform, see also Severini Pp 10-11.

(v) A rather large group family:

 X_i i.i.d. with cts df F and support the whole of \Re . $\mathcal{G} = \{g : g \text{ cts strictly increasing}, g(-\infty) = -\infty, g(\infty) = \infty\}$ $W_i = g(X_i)$, W_i are also i.i.d. with cts df and support the whole real line. Family consists of all such dsns.

(vi) A group family: $G = \{g_{b,c} : g(x) = bx^{1/c}, b > 0, c > 0\}.$ If X is standard exponential: $F(x) = 1 - e^{-x}$, $g_{b,c}(X)$ has Weibull dns with density $cb^{-c}x^{c-1}\exp((-x/b)^c)$

2.3 Sufficiency, minimal sufficiency, and completeness (Severini 1.5) (THIS IS REVISION ONLY)

(i) Defn: Vector T is sufficient for θ w.r.t. $\{P_{\theta}:\theta \in \Theta\}$ if $P_{\theta}(X|T(X) = t)$ does not depend on θ

(ii) Factorization criterion.

 $T(X)$ is sufficient for θ iff $f(x;\theta) \equiv h(x)g(T(X),\theta)$

(iii) Defn: $T(X)$ is minimally sufficient if it is a function of every sufficient statistic. Idea: coarsest partition of the sample space that is sufficient.

Minimal sufficient statistics are essentially unique.

(iv) Likelihood ratio criterion: define

$$
x \sim x'
$$
 iff $\frac{f(x; \theta_1)}{f(x; \theta_2)} = \frac{f(x'; \theta_1)}{f(x'; \theta_2)} \forall \theta_1, \theta_2 \in \Theta$

T is minimal sufficient iff $T(x) = T(x') \Leftrightarrow x \sim x'$

(v) Defn: Sufficient statistic T is (boundedly) complete if for any measurable real-valued (bounded) function g $E_{\theta}(q(T)) = 0 \ \forall \theta \in \Theta \implies P_{\theta}(q(T) = 0) = 1 \ \forall \theta \in \Theta$ (Completeness provides uniqueness of unbiased estimators of $\xi(\theta)$.)

(vi) Lehmann-Scheffé Thm: for sufficient T

T complete \Rightarrow T min suff.

(vii) Basu's Thm: for sufficient T T complete, V dsn not depending on θ

 $\Rightarrow \forall P_{\theta}, T, V \text{ independent.}$

2.4 Vector exponential families

(i) Density on some subset of \mathbb{R}^n w.r.t. some σ -finite **measure:** $f(x; \theta) = c(\theta)h(x) \exp(\sum_{j=1}^{k} \pi_j(\theta) t_j(x)) \quad \forall x \in \mathbb{R}^n$ For example: X_i i.i.d. from scalar exponential family \Rightarrow vector $X^{(n)}$ from (vector) exponential family.

(ii) For X_i i.i.d. from scalar exponential family,

 ${T_j \equiv \sum_{i=1}^n t_j(X_i); j = 1, ..., k}$ are sufficient. (Use 2.3(ii)).

(iii) ${T_j; j = 1, ..., k}$ is natural sufficient statistic. If there are no affine relationships among the $\{t_j(x)\}\text{, then } \pi_j$ are identifiable, and family is of full rank. Note the dimension k of suff. statistic does not depend on n .

(iv) For X_i i.i.d. from scalar exponential family,

 $\{T_j; j=1,...,k\}$ is also from a (vector) exponential family.

(v) For X_i i.i.d. from scalar exponential family, $((T_1, ..., T_l)|(T_{l+1}, ..., T_k))$ is also from a (vector) exponential family.

(vi) $m_T(s) = E(\exp(s'T)) = c(\pi)/c(s+\pi)$ where $c()$ is the c-fn for $T = (T_1, ..., T_k)$.

(vii) Provided Π contains an open rectangle in \Re^k

(a) Natural sufficient $(T_1, ..., T_k)$ is minimal sufficient

(b) Natural sufficient $(T_1, ..., T_k)$ is complete.

(viii) Rank vs dimension: Rank refers to affine relationships among $\{\pi_j\}$ or $\{T_j\}$. Full rank needed for minimal sufficiency (see Sev.P.18). Dimension refers to Π containing open rectangle in \Re^k , and is needed for uniqueness of Laplace transforms, and hence for completeness.

2.5 Multivariate Normal distribution (JAW 1.13, Sev 1.7)

Defn: $Y = (Y_1, ..., Y_n)$ is jointly Normal with mean 0 if ∃ $Z_1, ..., Z_k$ i.i.d. $N(0, 1)$ s.t. $Y = AZ$ for some $n \times k$ matrix A. (i) $var(Y) = E(YY') = E(AZZ'A') = AA' \equiv \Sigma$

(ii) Σ symmetric and non-negative definite $\Rightarrow \exists n \times n$ matrix A with $\Sigma = AA'$.

(iii) The mgf of Y is $m_Y(s)$ = $E(\exp(s'Y))$ = $E(\exp(s'AZ))$ = $E(\exp((A's)Z)) = E(\Pi_j \exp((A's)_j Z_j)) = \Pi_j E(\exp((A's)_j Z_j))$ = $\Pi_j m_{Z_j}((A's)_j)$ = $\Pi_j \exp(\frac{1}{2}((A's)_j)^2)$ = $\exp(\frac{1}{2} \Sigma_j (A's)_j)^2)$ = $\exp(\frac{1}{2}(s'A)(A's)) = \exp(\frac{1}{2}s'\Sigma s)$

(iv) If Σ is non-singular, then A is $n \times n$ non-singular, let $Y = \mu + AZ$, then the pdf of $Y \sim N_n(\mu, \Sigma)$ is $f_Y(y) = (2\pi)^{-n/2} |\Sigma|^{-1/2} \exp((y - \mu)'\Sigma^{-1}(y - \mu))$

(v) If $Y \sim N_n(0, \Sigma)$ and Σ is partitioned into dimensions k and $n - k$ as Σ_{ij} , $i, j = 1, 2$, then, using the mgf, (a) $(Y_1, ..., Y_k) \sim N_k(0, \Sigma_{11}).$

(b) If $\Sigma_{12} = 0$, $Y^{(1)} = (Y_1, ..., Y_k)$ is independent of $Y^{(2)} =$ $(Y_{k+1},..., Y_n)$.

(c) If $(X_1, X_2)'$ are jointly Normal vectors they are indep, **iff** $Cov(X_1, X_2) = 0$.

(d) Linear combinations of Normals are Normal.

(vi) If $Y \sim N_n(\mu, \Sigma)$, and $\mu' = (\mu^{(1)}, \mu^{(2)})$, Σ partitioned as in (v), and Σ_{22} non-singular then $(Y^{(1)}|Y^{(2)}) \sim N_k(\mu^{(1.2)}, \Sigma_{11.2}),$ where $\mu^{(1.2)} = \mu^{(1)} + \sum_{12} \sum_{22}^{-1} (Y^{(2)} - \mu^{(2)}), \ \Sigma_{11.2} = \ \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$. (vii) $Y^{(1)} - E(Y^{(1)} | Y^{(2)})$ is independent of $Y^{(2)}$ Proof: Check the covariance.

2.6 Chi-squared and non-central chi-sqared dsns (JAW 1.15-1.16)

(i) Defn: If X_i are i.i.d $N(0,1)$, $\Sigma_1^n X_i^2$ is χ_n^2 $\frac{2}{n}$. (ii) If $X \sim N(0, 1)$, $Y = X^2$, $m_Y(s) = E(\exp(sX^2)) = (1-2s)^{-1/2}$ If $V \sim \mathcal{E}(1)$, $m_V(s) = (1 - s)^{-1}$ If $W \sim G(\alpha, \beta)$, $m_W(s) = (1 - \beta s)^{-\alpha}$ (iii) Hence χ^2_n $\frac{2}{n}$ is Gamma, $G(n/2,2)$. $(iv) Y \sim N_n(0, \Sigma) \Rightarrow Y' \Sigma^{-1} Y \sim \chi_n^2$ n (v) If $X \sim N(\mu, 1)$, $Y = X^2$, $m_Y(s) = E(\exp(sX^2) = (1-2s)^{-1/2} \exp(\mu^2 s/(1-2s)).$ ${\bf If} \ \ (W|K \ = \ k) \ \ \sim \ \ \chi^2_{2k+1}, \ \ \ \ \ K \ \ \sim \ \ {\cal P}(\mu^2/2), \ \ {\bf then} \ \ \ m_W(s) \ \ =$ $E(E(e^{sW})|K) = E((1-2s)^{-(2K+1)/2}) = (1-2s)^{-1/2}m_K(\log(1/(1-2s)))$ which is same if we do the sums right!

(vi) Now let $X_1 \sim N(\mu, 1)$ and $X_{2,\dots,n}$ i.i.d $N(0, 1)$ indep of X_1 , $Y = \sum_1^n X_i^2$. Mgf of Y is multiplied by $(1-2s)^{-(n-1)/2}$, so now Y has dsn of W, where $W|K ∼ G((2k + n)/2, 2)$, K as above.

We define this dsn to be non-central χ^2 with n deg freedom and non-centrality $\delta = \mu^2$.

(Note: if $\mu = 0$, $P(K = 0) = 1$, and we regain $\chi^2 = G(n/2, 2)$.) (vii) Now $X \sim N_n(\mu, I)$, then $Y = X'X \sim \chi_n^2$ $n_a^2(\delta)$ with $\delta = \mu'\mu$. (viii) $X \sim N_n(\mu, \Sigma)$, $Y = X' \Sigma^{-1} X$, then $Y \sim \chi_n^2$ $\frac{2}{n}(\delta),\,\,\text{where}$ $\delta = \mu' \Sigma^{-1} \mu.$