Chapter 1: Measure and Random Variables (JAW Ch 0) 1.1 Measurable spaces

(i) Ω a fixed non-empty set. A non-empty class of subsets.

(ii) A field: closed under complements and finite unions.

(iii) A σ -field: closed under complements and countable unions.

Note: $\bigcap_{1}^{\infty} A_i = (\bigcup_{1}^{\infty} A_i^c)^c$

Examples:

(a) Ω finite or countable. 2^{Ω} = set of all subsets of Ω

(b) $C =$ some set of subsets of Ω , $\sigma(C) =$ smallest σ -field containing \mathcal{C} .

(c) $\Omega = \Re: \mathcal{C}$ the set of half-left-open intervals $(a, b]$ (including (c, ∞)). $\mathcal{B} = \sigma(C) \equiv$ Borel sets in \Re .

(d) Ω a metric space, metric ρ . C the open sets in Ω . $\mathcal{B} = \sigma(\mathcal{C}) \equiv$ Borel sets in Ω .

1.2 Measures and probability

(i) Measure μ : $\mathcal{A} \rightarrow [0,\infty]$, countably additive, with $\mu(\Phi) = 0$

(ii) Measure space is triple $(\Omega, \mathcal{A}, \mu)$

(iii) Finite measure: $\mu(\Omega) < \infty$. Probability Measure: $\mu(\Omega) = 1$ $σ$ -finite measure: Ω = ∪₁[∞]F_i, F_i ∈ A, μ(F_i) < ∞ (For example, Borel sets in \Re .)

(iv) Caratheodory-Hahn Extension Theorem – $(\sigma\text{-finite})$ measure μ on field C can be extended to (unique σ -finite) measure on $\sigma(\mathcal{C})$.

(v) Complete measure space:

 ${B \subset A, A \in \mathcal{A}, \mu(A) = 0} \Rightarrow B \in \mathcal{A} (\mu(B)) = 0.$

(vi) Completing spaces:

 $\mathcal{A}^* = \{A \cup N; A \in \mathcal{A}, N \subset B, B \in \mathcal{A}, \mu(B) = 0\}$ $\mu^*(A \cup N) = \mu(A)$

(vii) Lebesgue-Stieltjes measure: Measure μ on \Re assigning finite values to finite intervals.

(viii) Generalized df: function F on \Re , finite, increasing and right-continuous.

(xi) Correspondence Theorem: (1-1) correspondence between L-S measure μ on Borel sets and generalised dfs: $\mu((a, b]) = F(b) - F(a).$

(x) For a probability measure P on \mathbb{R} :

A df F: increasing, rt. cts., fn on \Re , $F(-\infty) = 0$, $F(\infty) = 1$. Correspondence theorem gives (1-1) relationship between Ps and Fs: $P((a, b]) = F(b) - F(a)$.

1.3 Measurable functions and random variables (JAW 0.7)

(i) $X: \Omega \to \mathbb{R}$ measurable if $X^{-1}(B) \in \mathcal{A}$ for B Borel in \mathbb{R} . (Note: Sufficient to check B of form (x, ∞)).

(ii) $X_1, ..., X_n...$ measurable $\Rightarrow \sup(X_n), \inf(X_n), \overline{\lim}(X_n), \underline{\lim}(X_n),$ $-X_n$ are measurable (also $\lim(X_n)$ if \exists).

(iii) Simple function: $X(\omega) = \sum_{i=1}^{m} a_i I_{A_i}(\omega)$ where A_i are disjoint, $A_i \in \mathcal{A}, a_i \in \Re, m < \infty$.

(iv) Any measurable $X \geq 0$ is limit of increasing sequence of simple functions.

Proof: by construction of simple $X_n \nearrow X$, based on $A_0 = I(X > n)$, $A_{n,k} = I(X \in ((k-1)2^{-n}, k2^{-n}])$.

(v) X measurable iff it is limit of simple functions. Proof: use (ii) and (iv).

(vi) X and Y measurable, g measurable \Rightarrow X + Y, X – Y, XY, X/Y , $X^+ = \max(X, 0)$, $X^- = \max(0, -X)$, |X| are measurable. (Proof: use (v))

(vii) g a measurable function $\Re \to \Re$, X measurable \Rightarrow $g(X)$ measurable since $(gX)^{-1}(B) = X^{-1}(g^{-1}(B)).$

g continuous \Rightarrow g measurable, since $g^{-1}(\textbf{open})$ is open.

1.4 Integration and integrability (JAW 0.8-9)

(i) For X simple, $X = \sum_{1}^{m} a_i I_{A_i}$, define $\int X d\mu = \sum_{1}^{m} a_i \mu(A_i)$. For $X \geq 0$, X measurable, $\exists X_n$ simple, $X_n \nearrow X$, define $\int X d\mu = \lim_{n} (\int X_n d\mu).$

For $X = X^+ - X^-$, define $\int X d\mu = \int X^+ d\mu - \int X^- d\mu$ provided at least one of these $<\infty.$

If $|f \cdot X d\mu| < \infty$, X is integrable. (Equiv. $f |X| d\mu < \infty$)

(ii) Then for integrable X, Y, $\int (X+Y)d\mu = \int X d\mu + \int Y d\mu$, $X \geq Y \Rightarrow fX d\mu \geq fY d\mu$, etc.

(iii) Three important theorems:

 $\mathbf{MCT:}\ 0\leq X_n\nearrow X, \ \mathbf{then}\ \mathbf{\scriptstyle{f}}\ X_n d\mu\rightarrow \mathbf{\scriptstyle{f}}\ X d\mu.$

Fatou's lemma: $0 \le X_n$, then flim inf $X_n d\mu \le \liminf (f X_n d\mu)$. DCT: $|X_n| \leq Y$, Y integrable, and $X_n \to X$ except perhaps on a set N with $\mu(N) = 0$, then $\int |X_n - X| d\mu \to 0$ and $\lim f X_n d\mu = f X d\mu.$

(iv) Let (Ω, \mathcal{A}, P) be a probability space.

A real-valued random variable X is a finite measurable function $\Omega \to \Re$. For B a Borel set in \Re ,

 $P_X(B) \equiv P(X \in B) = P(\{\omega \in \Omega : X(\omega) \in B\}).$ The asociated df is $F_X(-\infty) = 0$, $F_X(\infty) = 1$, $F_X(x) = P_X((-\infty, x])$, Then (\Re, \mathcal{B}, P_X) is a probability space.

Theorem of the unconscious statistician:

 $\int_{\Omega} g(X(\omega))dP = \int_{\Re} g(x)dP_X \equiv \int_{\Re} g(x)dF_X(x).$

1.5 Absolute continuity and densities. JAW 0.11

(i) $(\Omega, \mathcal{A}, \mu)$ a measure space. $X : \Omega \to \mathbb{R}$ measurable fn., $X \geq 0$. Define $\nu(A) = \int_A X d\mu \equiv \int_{\Omega} X I_A d\mu$.

Then ν is also a measure, and is finite iff X is integrable.

(ii) We say, ν has density X w.r.t. μ

(iii) $\mu(A) = 0 \Rightarrow \nu(A) = 0$: $\nu \ll \mu$ (ν is absolutely continuous w.r.t. μ , or μ dominates ν).

(iv) Radon-Nikodym theorem

 $(\Omega, \mathcal{A}, \mu)$ a measure space. μ σ-finite. $\nu \ll \mu$.

Then \exists measurable $X\geq 0$ s.t. $\nu(A)~=~$ $\iota_A\,Xd\mu$ for all $A\in\mathcal{A}.$ Further, X is unique a.e. (μ) .

Write $X = \frac{d\nu}{d\mu} \equiv$ Radon-Nikodym derivative of ν w.r.t. μ .

(v) Change of variable theorem

 $(\Omega, \mathcal{A}, \mu), \nu \ll \mu$ as above. Z measurable and $\int Z d\nu$ well defined. Then, for all $A \in \mathcal{A}$, $\int_A Z d\nu = \int_A Z \frac{d\nu}{d\mu} d\mu$. Proof: (see JAW 0.11-12):

 $Z = I_B$, Z simple, $Z \ge 0$, $Z = Z^+ - Z^-$.

(vi) Example: real-valued vector random variables: Probability space is $(\Re^n, \mathcal{B}_n, P)$.

We assume P has a density f w.r.t. σ -finite measure μ . If μ is Lebesgue measure of \mathbb{R}^n : f is pdf.

If μ is counting measure on countable set, f is pmf.

1.6 Product spaces and product measures. (JAW 0.13)

(i) Product measures

Let (X, \mathcal{X}, μ) and (Y, \mathcal{Y}, ν) be σ -finite measure spaces. Let $A \in \mathcal{X}, B \in \mathcal{Y}$: $A \times B \equiv \{(x, y); x \in A, y \in B\}.$ Define $\mathcal{X} \times \mathcal{Y} \equiv \sigma(\lbrace A \times B : A \in \mathcal{X}, B \in \mathcal{Y} \rbrace)$ Let $\pi(A \times B) = \mu(A)\nu(B)$ for "measurable rectangle" $A \times B$. π is "product measure" on $\mathcal{X} \times \mathcal{Y}$.

(ii) Fubini's Theorem

Suppose $f : \mathcal{X} \times \mathcal{Y} \to [0, \infty)$ is $\mathcal{X} \times \mathcal{Y}$ measurable. Then $\int_{\mathcal{Y}} f(x,y) d\nu(y)$ is X-measurable.

and $\int_{\mathcal{X}} f(x,y) d\mu(y)$ is $\mathcal{Y}\text{-measurable.}$

$$
\int_{\mathcal{X}\times\mathcal{Y}} f(x,y)d\pi(x,y) = \int_{\mathcal{X}} \left(\int_{\mathcal{Y}} f(x,y)d\nu(y) \right) d\mu(x)
$$

=
$$
\int_{\mathcal{Y}} \left(\int_{\mathcal{X}} f(x,y)d\mu(y) \right) d\nu(y).
$$

If f is s.t. $\int |f|d\pi < \infty$, then above is true even if f is not $>0.$