
Chapter 1: Measure and Random Variables (JAW Ch 0)

1.1 Measurable spaces

(i) Ω a fixed non-empty set. A non-empty class of subsets.

(ii) A field: closed under complements and finite unions.

(iii) A σ-field: closed under complements and countable

unions.

Note: ∩∞1 Ai = ( ∪∞1 Ac
i)

c

Examples:

(a) Ω finite or countable. 2Ω = set of all subsets of Ω

(b) C = some set of subsets of Ω, σ(C) = smallest σ-field

containing C.
(c) Ω = <: C the set of half-left-open intervals (a, b]

(including (c,∞)). B = σ(C) ≡ Borel sets in <.

(d) Ω a metric space, metric ρ. C the open sets in Ω.

B = σ(C) ≡ Borel sets in Ω.
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1.2 Measures and probability

(i) Measure µ : A → [0,∞], countably additive, with

µ(Φ) = 0

(ii) Measure space is triple (Ω,A, µ)

(iii) Finite measure: µ(Ω) < ∞.

Probability Measure: µ(Ω) = 1

σ-finite measure: Ω = ∪∞1 Fi, Fi ∈ A, µ(Fi) < ∞
(For example, Borel sets in <.)

(iv) Caratheodory-Hahn Extension Theorem – (σ-finite)

measure µ on field C can be extended to (unique σ-finite)

measure on σ(C).

(v) Complete measure space:

{B ⊂ A, A ∈ A, µ(A) = 0} ⇒ B ∈ A (µ(B) = 0.)

(vi) Completing spaces:

A∗ = {A ∪N ; A ∈ A, N ⊂ B, B ∈ A, µ(B) = 0}
µ∗(A ∪N) = µ(A)

(vii) Lebesgue-Stieltjes measure: Measure µ on <
assigning finite values to finite intervals.

(viii) Generalized df: function F on <, finite, increasing

and right-continuous.

(xi) Correspondence Theorem: (1-1) correspondence

between L-S measure µ on Borel sets and generalised dfs:

µ((a, b]) = F (b)− F (a).

(x) For a probability measure P on <:

A df F : increasing, rt. cts., fn on <, F (−∞) = 0, F (∞) = 1.

Correspondence theorem gives (1-1) relationship between

P s and F s: P ((a, b]) = F (b)− F (a).
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1.3 Measurable functions and random variables (JAW 0.7)

(i) X : Ω → < measurable if X−1(B) ∈ A for B Borel in <.

(Note: Sufficient to check B of form (x,∞)).

(ii) X1, ..., Xn... measurable ⇒ sup(Xn), inf(Xn), lim(Xn), lim(Xn),

−Xn are measurable (also lim(Xn) if ∃).
(iii) Simple function: X(ω) =

∑m
1 aiIAi

(ω) where Ai are

disjoint, Ai ∈ A, ai ∈ <, m < ∞.

(iv) Any measurable X ≥ 0 is limit of increasing sequence

of simple functions.

Proof: by construction of simple Xn ↗ X,

based on A0 = I(X > n), An,k = I(X ∈ ((k − 1)2−n, k2−n]).

(v) X measurable iff it is limit of simple functions.

Proof: use (ii) and (iv).

(vi) X and Y measurable, g measurable ⇒ X + Y , X −
Y , XY, X/Y, X+ = max(X, 0), X− = max(0,−X), |X| are

measurable. (Proof: use (v))

(vii) g a measurable function < → <, X measurable ⇒
g(X) measurable since (gX)−1(B) = X−1(g−1(B)).

g continuous ⇒ g measurable, since g−1(open) is open.
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1.4 Integration and integrability (JAW 0.8-9)

(i) For X simple, X =
∑m

1 aiIAi
, define

∫
Xdµ =

∑m
1 aiµ(Ai).

For X ≥ 0, X measurable, ∃ Xn simple, Xn ↗ X, define∫
Xdµ = limn(

∫
Xndµ).

For X = X+−X−, define
∫
Xdµ =

∫
X+dµ−∫

X−dµ provided

at least one of these < ∞.

If | ∫
Xdµ| < ∞, X is integrable. (Equiv.

∫ |X|dµ < ∞)

(ii) Then for integrable X, Y ,
∫
(X +Y )dµ =

∫
Xdµ+

∫
Y dµ,

X ≥ Y ⇒ ∫
Xdµ ≥ ∫

Y dµ, etc.

(iii) Three important theorems:

MCT: 0 ≤ Xn ↗ X, then
∫
Xndµ → ∫

Xdµ.

Fatou’s lemma: 0 ≤ Xn, then
∫
lim infXndµ ≤ lim inf(

∫
Xndµ).

DCT: |Xn| ≤ Y , Y integrable, and Xn → X except perhaps

on a set N with µ(N) = 0, then
∫ |Xn − X|dµ → 0 and

lim
∫
Xndµ =

∫
Xdµ.

(iv) Let (Ω,A, P ) be a probability space.

A real-valued random variable X is a finite measurable

function Ω → <. For B a Borel set in <,

PX(B) ≡ P (X ∈ B) = P ({ω ∈ Ω : X(ω) ∈ B}). The

asociated df is FX(−∞) = 0, FX(∞) = 1, FX(x) = PX((−∞, x]),

Then (<,B, PX) is a probability space.

Theorem of the unconscious statistician:∫
Ω g(X(ω))dP =

∫
< g(x)dPX ≡ ∫

< g(x)dFX(x).
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1.5 Absolute continuity and densities. JAW 0.11

(i) (Ω,A, µ) a measure space. X : Ω → < measurable fn.,

X ≥ 0. Define ν(A) =
∫
A Xdµ ≡ ∫

Ω XIAdµ.

Then ν is also a measure, and is finite iff X is integrable.

(ii) We say, ν has density X w.r.t. µ

(iii) µ(A) = 0 ⇒ ν(A) = 0: ν � µ (ν is absolutely continuous

w.r.t. µ, or µ dominates ν).

(iv) Radon-Nikodym theorem

(Ω,A, µ) a measure space. µ σ-finite. ν � µ.

Then ∃ measurable X ≥ 0 s.t. ν(A) =
∫
A Xdµ for all A ∈ A.

Further, X is unique a.e.(µ).

Write X = dν
dµ ≡ Radon-Nikodym derivative of ν w.r.t. µ.

(v) Change of variable theorem

(Ω,A, µ), ν � µ as above. Z measurable and
∫
Zdν well

defined. Then, for all A ∈ A,
∫
A Zdν =

∫
A Z dν

dµdµ.

Proof: (see JAW 0.11-12):

Z = IB, Z simple, Z ≥ 0, Z = Z+ − Z−.

(vi) Example: real-valued vector random variables:

Probability space is (<n,Bn, P ).

We assume P has a density f w.r.t. σ-finite measure µ.

If µ is Lebesgue measure of <n: f is pdf.

If µ is counting measure on countable set, f is pmf.
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1.6 Product spaces and product measures. (JAW 0.13)

(i) Product measures

Let (X,X , µ) and (Y,Y , ν) be σ-finite measure spaces.

Let A ∈ X , B ∈ Y: A×B ≡ {(x, y); x ∈ A, y ∈ B}.
Define X × Y ≡ σ({A×B : A ∈ X , B ∈ Y}
Let π(A×B) = µ(A)ν(B) for “measurable rectangle” A×B.

π is “product measure” on X × Y.

(ii) Fubini’s Theorem

Suppose f : X × Y → [0,∞) is X × Y measurable. Then∫
Y f (x, y)dν(y) is X -measurable.

and
∫
X f (x, y)dµ(y) is Y-measurable.∫

X×Y f (x, y)dπ(x, y) =
∫
X

(∫
Y f (x, y)dν(y)

)
dµ(x)

=
∫
Y

(∫
X f (x, y)dµ(y)

)
dν(y).

If f is s.t.
∫ |f |dπ < ∞, then above is true even if f is not

≥ 0.
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