Chapter 1: Measure and Random Variables (JAW Ch 0)
1.1 Measurable spaces

(i) ©2 a fixed non-empty set. A non-empty class of subsets.
(ii) A field: closed under complements and finite unions.

(iii) A o-field: closed under complements and countable
unions.

Note: N°A; = ( UP A9)°

Examples:
(a) ) finite or countable. 2 = set of all subsets of )

(b) C = some set of subsets of (2, ¢(C) = smallest o-field
containing C.

(c) Q@ = R: C the set of half-left-open intervals (a, 0]
(including (¢, 0)). B = 0(C) = Borel sets in R.

(d) 2 a metric space, metric p. C the open sets in ).
B = o(C) = Borel sets in ().



1.2 Measures and probability

(i) Measure : A — [0,00], countably additive, with
u(®) =0

(ii) Measure space is triple (Q, A, u)

(iii) Finite measure: pu(f)) < oc.

Probability Measure: p(§2) = 1

o-finite measure: () = U°F;, F, € A, u(F,) < o

(For example, Borel sets in R.)

(iv) Caratheodory-Hahn Extension Theorem — (o-finite)
measure p on field C can be extended to (unique o-finite)
measure on o(C).

(v) Complete measure space:

{BCA A A uA) =0} = BeA(uB) = 0.

(vi) Completing spaces:

A = {AUN; Ae A, NCB, Be A, u(B)=0}

WAUN) = p(A)

(vii) Lebesgue-Stieltjes measure: Measure g on R
assigning finite values to finite intervals.

(viii) Generalized df: function F' on R, finite, increasing
and right-continuous.

(xi) Correspondence Theorem: (1-1) correspondence
between L-S measure i on Borel sets and generalised dfs:
p((a,b]) = F(b) — Fla).

(x) For a probability measure P on R:

A df F': increasing, rt. cts., fn on R, F(—o0) =0, F(oc0) = 1.
Correspondence theorem gives (1-1) relationship between
Ps and Fs: P((a,b]) = F(b)— F(a).
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1.3 Measurable functions and random variables (JAW 0.7)

(i) X : Q — R measurable if X~!(B) € A for B Borel in R.
(Note: Sufficient to check B of form (x,c0)).

(ii) X1, ..., X,,... measurable = sup(X,), inf(X,), lim(X,), lim(X,),
—X,, are measurable (also lim(X,,) if 3).

(iii) Simple function: X(w) = x{'a;l4(w) where A; are
disjoint, A; € A, a, € R, m < oc.

(iv) Any measurable X > 0 is limit of increasing sequence
of simple functions.

Proof: by construction of simple X, 7 X,

based on Ay =I(X >n), A, =1(X € (k—1)27",k277]).

(v) X measurable iff it is limit of simple functions.
Proof: use (ii) and (iv).

(vi) X and Y measurable, g measurable = X + Y, X —
Y, XY, X/Y, X = max(X,0), X~ = max(0,—X), |X| are
measurable. (Proof: use (v))

(vii) ¢ a measurable function ® — R, X measurable =
g(X) measurable since (¢X) (B) = X Y¢ }B)).
g continuous = g measurable, since g !'(open) is open.



1.4 Integration and integrability (JAW 0.8-9)

(i) For X simple, X =x{"a;14,, define | Xdy = 7" a;u(4;).
For X > 0, X measurable, 4 X, simple, X, ~ X, define
J X dp = lim, (S X,du).

For X = X*— X", define  Xdu = /X du—J X du provided
at least one of these < oo.

If |/ Xdu| < co, X is integrable. (Equiv. [|X|du < oo)

(ii) Then for integrable X, Y, /(X +Y)dy = | Xdu+/Ydpy,
X>Y = [/ Xdu>/Ydu, etc.

(iii) Three important theorems:

MCT: 0< X,, /X, then |/ X, du — | Xdpu.

Fatou’s lemma: 0 < X,,, then /liminfX,dy < liminf(s X, du).
DCT: | X,| <Y, Y integrable, and X, — X except perhaps
on a set N with u(N) = 0, then /|X, — X|dy — 0 and
limf X, dp = JXdu.

(iv) Let (2, A, P) be a probability space.

A real-valued random variable X is a finite measurable
function () — . For B a Borel set in R,

Pyx(B) = P(X e B) = P{w € Q: X(w) € B}). The
asociated df is Fiy(—oo0) =0, Fx(oc0) =1, Fx(z) = Px((—o0, z]),
Then (R, B, Pyx) is a probability space.

Theorem of the unconscious statistician:

log(X(w)dP = fpg(x)dPx = Jpg(z)dFx(x).



1.5 Absolute continuity and densities. JAW 0.11

(i) (2, A, 1) a measure space. X : () — R measurable fn.,
X > 0. Define v(A) = 4 Xdu = Jo X1adp.
Then v is also a measure, and is finite iff X is integrable.

(ii) We say, v has density X w.r.t. u

(iii) u(A) =0 = v(A) = 0: v < p (v is absolutely continuous
w.r.t. i, or ; dominates v).

(iv) Radon-Nikodym theorem

(2, A, 1) a measure space. p o-finite. v < p.

Then 3 measurable X > 0s.t. v(A) = /4 Xdu for all A € A.
Further, X is unique a.e.(u).

Write X = ZZ = Radon-Nikodym derivative of v w.r.t. u.

(v) Change of variable theorem

(2, A, u), v < pu as above. Z measurable and | Zdv well
defined. Then, for all A€ A, 41 Zdv = Ja Zfll’id,u.

Proof: (see JAW 0.11-12):

7 =1y, 7 simple, Z>0, Z=7"—7".

(vi) Example: real-valued vector random variables:
Probability space is (R", B, P).

We assume P has a density [ w.r.t. o-finite measure pu.
If 11 is Lebesgue measure of R": f is pdf.

If ;4 is counting measure on countable set, f is pmf.



1.6 Product spaces and product measures. (JAW 0.13)

(i) Product measures

Let (X, X,u) and (Y,),v) be o-finite measure spaces.

Let Ac X, Be)Y: AxB = {(z,y);x € A,y € B}.
Define XY x)Y = o({AxB:AeX Be)}

Let m(A x B) = u(A)v(B) for “measurable rectangle” A x B.
m is “product measure” on X x ).

(ii) Fubini’s Theorem

Suppose f: X' x)Y — [0,00) is X x Y measurable. Then
Iy f(z,y)dv(y) is X-measurable.

and [y f(z,y)du(y) is YV-measurable.

Jewy S g)dn(e,y) = [, (] f(x.y)dv(y)) du(o)
= [, ([ flw,y)dp(y)) dv(y).

If fis s.t. /|f|dm < oo, then above is true even if f is not
> 0.



