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Chapter 2: More about Random Variables

2.1 Covariance and conditional expectation

2.1.1 Covariance and correlation (C&B 4.5)

Variance: var(X) = E((X — E(X))?) = E(X?) - (E(X))?

Covariance: cov(X,Y) = E((X —EX))(Y —E(Y))) = E(XY) — EX)E(Y)
Properties:

(i) X, Y independent = cov(X,Y) = 0, but in general not conversely.

(ii) If (X,Y) is bivariate Normal, cov(X,Y) = 0 = X, Y independent (see 1.3.2, 3.1.2).
(iii) cov(g1(X),g2(Y)) = 0 for all functions g;() and go(), then X, Y are independent.
(iv) var(aX 4+ bY) = a2 var(X) + 2a b cov(X,Y) + b? var(Y).

Correlation: p(X,Y) = cov(X,Y)//var(X)var(Y)

Note: For all real ¢,

0<h(t) = E((X -EX)) t+ (Y -E(Y)))?)
= t?var(X) + 2t cov(X,Y) + var(Y)
so [2cov(X,Y)]? < dvar(X)var(Y) or —1 < p(X,Y) < 1, with equality iff
(X —E(X))t+ (Y —E(Y)) =0 for some ¢t. That is, Y = aX + b for some a, b.
2.1.2 Conditional expectation (C&B 4.4)

E(X) is the best predictor of the value of X in the sense of minimising E((X — m)?) (see 1.2.2).
Similarly, given Y =y, m(y) = E(X | Y = y) minimises E(X —m/(Y))? | Y =)

or m(Y) = E(X | Y) minimises E((X — m(Y))? | Y).

That is E(X | Y) is the best predictor of X based on Y.

Properties:

(i) E(X) = E(E(X |Y)) since

[ [atsminay = [| [ ofsym @] 1wy
(ii) var(X) = E(var(X |Y)) + var(E(X | Y)) since
E(X?) = E(E(X?]Y)) = E(var(X | Y) + (E(X |Y))?)

= E(var(X | Y)) var(E(X | Y)) E(E(X | Y)))?

Y
= E(var(X | Y)) + var(E(X | Y)) + (B(X))?

+ +

+ (

+ (

2.1.3 Examples

(i) Given N = n, T = number of recombinants ~ B(n, ). Suppose N ~ P(A). Then
E(T| N)=N#0, var(T|N) = NO(1—-0). So E(T) = E(N0) = 0E(N) = X\

and var(T) = E(NO(1 —0)) var(NO) = N1 —0) + 6°X = N0
In fact, T ~ P(A\0) (see 2.2.3, 2.3.9).



ii) Given N =n, T = " . X; where X; are independent, each with mean p and variance 2.
’ =1 P ’ 1%

Then
E(T) = E(Np) = pBE(N), and var(T) = E(No?) + var(Np) = o E(N) + p? var(N)
(The result for the mean does not require that the X; are independent.)
2.2 Moment Generating functions (C&B 2.3, 4.6)
2.2.1 Definitions and Theorems

Univariate case: The m.g.f of a real-values r.v X is mx(t) = E(e!X), —oo < t < +00. Note
mx(0) = 1. For t # 0, mx(t) may not exist (i.e. be +00.).

Multivariate case: The m.g.f. of vector random variable X = (Xi,..., Xj) is
k
mx(t) = E('™) = E(exp()_tiXi))
1

Two important facts: (actually theorems, but not proved here)
(i) Uniqueness: If there exists € > 0 s.t. mx (t) exists for |t| < €, then

mx(t) = my(t) for all t with [t| <e, iff Fx(x) = Fy(x) for all x
(ii) Convergence: If there exists € > 0 s.t. mx, (t) exists for |t| < ¢, for all n, then
mx, (t) — mx(t) for all t with |t| < e, iff Fx,(x) — Fx(x)
for all x at which Fx(x) is continuous.
2.2.2 Properties

(i) Assuming the expectations exist:

(il) X = (X1, ..., Xg), Ais I x k, t = (t1,...., )", b= (b1, ..., by)".
max+b(t) = E(exp((aX +b)t)) = exp(bt)E(exp(atX)) = exp(bt) mx(at)
maxib(t) = E(exp(t'(AX +b))) = exp(t'b)E(t'AX) = exp(t'b)mx(A't)

(iii) If X; are independent, and Y = > 7' ; X; (vector or scalar)
n

my (t) = E(exp(t'Y)) = E(exp(d_t'X;)) = E(JJexp(t'X;)) = J[E(exp(t'X:)) = []mx,(t)
1 1 1 1

(iv) From (ii) and (iii), if X; are i.i.d, each with m.g.f mx(¢),
if Y = Y X;, my(t) = (mx(#)"
1

Y = X = 23X, my() = Eexw(X0 Xi/n)
1

SRS

n

= E([Jexp(t Xi/n)) = ﬁE(eXp(t Xifn)) = (mx(t/n))"

if Y = (X —p)/vno, my(t) = exp(—pt/vno)mg(t/vno))
= exp(—pt/v/no)(mx (t/(nv/no)))"



(v) Y = N X;, where X; are i.i.d. and N is a r.v.

N

N
my(t) = E(exp(tY. X)) = E(E(exp(tY Xy)) | N)
1 1

= E((mx(1)") = E(exp(N log(mx(t)))) = mny(log(mx(t)))
(vi) In fact, Xy, ..., X are jointly independent if and only if
k
mx(t) = E(exp(t'X)) = Hle (t;)
1

The proof follows from the uniqueness of m.g.fs.
2.2.3 Examples
(i) Scale parameters in Gammas and ezponentials

If X ~ G(a, B), fx(z) = ﬁﬁ*%a*le*w/ﬁ on 0 < z < oo.
Direct integration gives myx (t) = (1 — ft)™°.
So mx/g(t) = mx(t/B) = (1—1t)7*. That is, X/8 ~ G(a,1).
Similarly for exponentials: £(3) = G(1,03). Here, [ is a scale parameter.
Also, if X; is G(wy, 3), independent. Then Y~ X; ~ G(X «y, ).
(ii) The Poisson-Bionomial hierarchy
If X ~ B(n,0), mx(t) = (1 -0+ 6e)".
Y ~P(\). my(t) = exp(6(et —1)).
If (X|Y)~ B(Y,0),and Y ~ P(}A),
mx(t) = E(E(EY |Y)) = B((1-0+0¢")") = my(log(1 -0+ 0e"))
= exp(A\((1 —0+0e") —1)) = exp(Ad(e' — 1))

That is X ~ P(A).
2.3 The Poisson Process
2.3.1 Definition

Events occur “independently and at random” (in time or space) at a given rate A\. That is, the
probability that one event occurs in a small time (or space) interval dz is Az + o(dx)

and the probability of more than one event is o(dx). Occurences of events in disjoint intervals are
independent.

2.3.2 An example from genetics

A chromosome which ends up in a gamete (sperm or egg cell) is formed by copying the DNA from
the pair of corresponding chromosomes that are in every (non-gamete) cell of the parent. One
chromosome of the pair is the parent’s maternal chromosome. The other is the parent’s paternal
chromosome. In forming the gamete chromosome, at random points the copying switches from one
parental chromosome to the other; these points are known as crossovers. (Note this is a description
of the outcome, not of the actual biological process of meiosis.)

Haldane (1919) proposed to model the occurrence of crossovers along the chromosome as a Poisson
process. This is not exactly so, but it is quite an accurate model for most purposes. He defined
the (additive) measure of genetic distance between two points on the chromosome as the expected



number of crossovers between them. He defined the Morgan as the distance over which 1 crossover
is expected, so if we measure genetic distance in Morgans we have a Poisson process rate 1.

2.3.3 Waiting times are exponential 5(%)
Suppose we have a Poisson process rate A, let X be the time (or distance) to the next event, and
let H(z) = P(X >z) = 1— Fx(z). Then
H(z+d6x) = H(z)(1—-Xoz) + o(dx)
dH

or —— = —AH or H(z) = exp(—Az) (H(0) = 1)

so Fx(z) = 1—exp(—Az), fx(z) = Xexp(—Az), or X ~ E(1/))
2.3.4 The forgetting property of exponentials

This follows directly from the cdf:

it X ~E&(1/N), H(z) = P(X > z) = exp(—Az), so H(z + ¢) = H(z)H(c) or
PX>z+c|X>c) = P(X >ux).

However, the result also makes sense from the definition of the Poisson process; the occurrences (or
not) of events in disjoint time intervals are independent.

2.3.5 The time to n'" event is Gamma

The waiting time to the next event is exponential. The time to the next is independent of past
occurrences. The sum of i.i.d exponentials is gamma. So the total time to the n'? event is G(n,1/)).

2.3.6 The number of events in interval T is Poisson mean \T

Let P,(z) = P(Y = n) be the probability of n events in interval length = in a Poisson process
rate A\. Then

P,(x+0z) = (1—Xox)Py(xz) + NzP,_1(z) + o(dz)
P,
or % = — APn(.’E) +>\Pn_1(x)

Let my(z,t) = Y.9°,¢e™P,(x) be the m.g.f. of Y. Then

%my(a:,t) = —dmy(x,t) + edmy(z,t) = Ae' — V)my(,t)
Hence, my(z,t) = exp(Az(e’ —1)) (my(0,) =1, my(z,0) =1)

But this is the m.g.f. of a P(Az), so Y ~ P(\zx).

2.3.7 Given an event in interval T, its time ~ U(0,7)

Suppose it is given that one event occurred in [0,7]. Let X be the time at which it occurred.

) _ P(leventin [0,2],0 in (z,T]))  Pi(z)P(T —z) =
P(X <z |1eventin [0,T]) = B in [0.7]) = P1(T) = 7

which is the required U(0,T) cdf. Note since events occur independently, the same result holds for
each given event.

2.3.8 Superposed Poisson processes make another Poisson process

Consider a set of Poisson processes rate A;, ¢ = 1,..., k. Combining all the events we still have a
Poisson process, rate Zle Ai- This follows from the original definition, or from the fact that sum
of independent Poisson r.vs is Poisson.



Note this ties in with the minimum of independent exponentials being exponential. The time to
the first event in process ¢ is £(1/A;). The time to the first event in any of the processes is the
minimum of the times for each process, and is £(1/Y; ).

2.3.9 Given W = w events in total process, the number Y; from one process is Binomial

In the combined process, given an event occurs, the probability it is from i*" subprocess is §; =
i/ E?:l Aj, again from original definition. This is true independently for each of w events. So,
given W = w, Y; ~ B(w, 6;). Note this is the same result from Hwk Exercise 4.15.

Conversely, if we start with (Y; | W) ~ B(W,#0;) and give W a Poisson distribution, we get back
Y; ~ P(\;), as shown previously, using m.g.fs. (see 2.2.3).

2.4 Three important inequalities (C&B 4.7)
2.4.1 Holder’s inequality

|E(XY)| < E(XY|) < (E(X)"P(E(Y]9)"

wherep,q>0and% + % = 1.

Proof: First take v, w > 0, and p, ¢ as above (note p,q > 1). Let

1 1
glv,w) = = + —w? — vw
p q
Minimising g(v, w) w.r.t. v, we have % = P! —wand g—ié’ = (p—1)vP~2 > 0 and substituting

vP~! = w we obtain that the minimised value of g(v,w) is 0.

Now we note first that —|XY| < XY < |XY]| to get the first inequality, and then substitute
v = |X|/(E(|XP)Y/? and w = |Y|/(E(]Y]9))"/? in g(v,w) > 0 to get the final result.

Note: Cauchy-Schwarz inequality is a special case of Holder’s inequality applied to (X — E(X))
and (Y —E(Y)), withp=¢=2.

2.4.2 Chebychev’s inequality If g() is a non-negative real-valued function
P(g(X) 2 b) < B(g(X))/b
Proof:
E(g(X) = [Ss@ix@de = [ g@ix@de + [ g@)fx@)da
> 0+ b fx(@)de = bP(g(X) 2 b)

where A = {z : g(x) > b}.
Most often this is applied to g(X) = (X — E(X))?, to obtain

P(IX —E(X)| > a) = P((X —E(X))? > a®) < B((X — B(X))*)/a®> = var(X)/a®

Note also this is a very weak inequality. It is rather useless for practical examples. However it is
very useful to give rates of convergence in large samples (see later).



2.4.3 Jensen’s inequality

For a convex function g(),
E(g9(X)) > g(E(X)),
with strict inequality if g() is strictly convex, unless var(X) = 0.

Proof: For a convex function g(z) > ax + b where a and b are chosen s.t. the line y = az + b
touches the curve y = g(x), at any chosen point, say at E(X). That is, g(E(X)) = aE(X) + b.
Then

B(g(X)) > B(aX +b) = aB(X)+b = g(E(X))

Examples: E(X?) > (E(X))?, BE(1/X) > 1/E(X), E(—1log(X)) > —log(E(X)), the last two of
these being for a positive r.v. X.



Chapter 3: Random samples and Convergence

3.1 Some notes about Normal distributions

3.1.1 The (univariate) Normal distribution

(i) Define X ~ N(g,0?) if fx(z) = (2m0?) % exp(—(x — p)2/20?).

(ii) Let Y = (X — p)/o and transform the density to obtain fy(y) = (2%)_% exp(—y?/2) or
Y ~ N(0,1).

(iii) (X — p) has a distribution not depending on p; u is a location parameter.
(X — p)/o has a distribution not depending on y or o; o is a scale parameter.
The family of Normal distributions is a location-scale family.

(iv) Now if Y ~ N(0,1), direct integration gives my (t) = exp(t?/2). Hence, differentiating the
m.g.f. E(Y) =0, var(Y) = E(Y?) = 1.

(v) Transforming back to X = yu+ oV, E(X) = p, var(X) = 02, and transforming the m.g.f
mx(t) = E(exp(t(u+0Y))) = exp(ut)my(ot) = exp(ut+ 1o%t?)

(vi) Now let Z = aX + b, then

mz(t) = exp(bt)mx(at) = exp((ap+b)t + L(a®0?)t?)
or Z ~ N(au + b,a%a?).
Any linear transformation of a Normal r.v. is Normal.
3.1.2 Multivariate Normal distributions
(i) Let X = (X1, ..., X) be i.i.d N(0,1), so mx(t) = exp(3t't).
(i) Define Y to be multivariate Normal (MVN) is Y = AX + b, where X; are i.i.d. N(0,1), and A
is (for convenience) a k x k non-singular matrix. Hence X = A~ }(Y — b).
(ii) Hence E(Y) = b =y, var(Y) = ¥ = AA’, and my(t) = exp(t'u + 3t'St).
Hence, the dsn of Y is determined by its mean, u, and variance-covariance matrix X..
(i)

m(y“y]) = my(O, ceey O, ti, 0, ceey 0, tj,O, ceny 0)
= my; (ti)my;)(t;) exp(tit; (Zi; + Xj:))

Thus the joint m.g.f factorises if and only if cov(Y;,Y;) = ¥;; = 35 = 0.

g
Jointly Normal random variables are independent is and only if they have zero correlation.

(iv) The marginal dsn of any subset of the Y; is Normal; this follows directly from the mgf.
The conditional dsn of any subset of the Y;, conditional on the other components, is Normal; this
is harder to prove.

(v) Using X = A~1(Y — ), we can transform from the joint density of the i.i.d. N(0,1) components
of X, to get the density of Y:

Fr(y) = (@) *2(det(S)) 2 exp(—L(y - p)'S (y - 1))



3.1.3 Independence of sample mean and sample variance

(i) Let X1, ..., X, be i.i.d. N(g,0?).
Define the sample mean X, = n~ '3 X; so X,, ~ N(u,0?/n),
and the sample variance 5? = (n — 1)~} 3(X; — X )%

(i) Let ¥; = (X; — X,) fori =1,...,(n — 1), and note then (X, — X,) = — Y71V,
(see

Then (Y1, ..., Yn_1, X ) is multivariate Normal, but cov(Y;, X,,) = 0 4.2.4(c)), so (Y1,..., Yn_1)

is independent of X,.

(iii) Now (n —1)S? = Y77'Y? + (- X771Y;)? a function of (Y3,...,Yn—1). So S? and X,, are
independent.

3.1.4 Some notes about y? distributions

(i) Define a x2 dsn as the dsn of 3% Z2, where Z; are i.i.d. N(0,1).

(ii) Consider Y ~ x? = Z? where Z ~ N(0,1).

Direct integration gives my () = (1 — 2t)_%. Thus Y ~ G(3,2), and x2 = G(v/2,2).
(iii) Now suppose X1, ..., X;, are i.i.d. N(p,0?). Then

Z(X’i_y‘)2 = Z(Xz _yn)2 + n(yn_/")2
1 1

W = (n— 1)5’2/0'2 + V
where W ~ x2 and V ~ x2. Also S$? and V are independent. Hence the m.g.f. of (n — 1)S%/0? is
mw () /my(t) = (1—20)""2/(1—-2)"Y? = (1—2t)"(»"/2

Thus
(n—1)8% ~ 0?2 | = d°G((n —1)/2,2) = G((n —1)/2,20?)

3.2 Convergence and limit theorems (C&B 5.3)
3.2.1 Convergence in probability

Let Xq,...,X,, be a sequence of r.v.s defined on the same probability space. X, converges in
probability to X (written X, X ) if, given any € > 0

P(| X, —X| > € — 0 asn — o0

Example 1: P(X, =7+ %) =1- %, P(X, =n? = %’
Given ¢, take n > 1, then P(|X, — 7| >€) = P(X, =n?) = 1 - 0asn — oco. That is X, 7.
(Note the limiting r.v. X is degenerate here: P(X =7) =1.)

3.2.2 Theorem (Weak Law of Large Numbers) (WLLN)

Let Y3,Ys, ... be a sequence of i.i.d. r.vs with E(|Y;|) < co. Let ¥, = 2 7 ¥;. Then Y,—>E(Y1).
Proof: (for var(Y;) = 02 < o0)

Let E(Y;) = u, var(¥;) = 2. Then E(Y,,) = p and var(Y,,) = o2 /n.

Hence by Chebychev’s inequality, P(|Y,, — pu| >¢€) < var(Y,)/e2 = o?/ne? — 0asn — oo.
Example 2: Y] iid., var(¥;) = 02 < o0, E(Y;) = p, Z, = 1 ST Y2

By W.L.L.N, Y, , and Z,-5E(Y?2) = p?+ 02



(a) X,k — X%iﬂcz, since, assuming k > 0,
P(|X2-K’|>¢) < P(Xpn<Vk2—¢€) + P(X, > VEk24+¢) = 0
(b) Xp—2X, Wy—oW = (X, — W) (X — W)
since |(X,, —W,) — (X = W)| < | X, - X|+ |W,, - W|.
(c) Hence, Z, — (Yn)? 2 0% + 42 — (u)? = 0.
3.2.3 Convergence almost surely

Let X1,Xo,... be a sequence of random variables defined on the same probability space. X,
converges almost surely to X (written X, =% X) if, for any € > 0, P(lim,, o0 | X, — X| > €) = 0.
Note this is convergence of X, as a function; it is stronger than convergence in probability.

3.2.4 Theorem (Strong Law of Large Numbers) (SLLN) without proof.

Let Y7,Y5, ... be a sequence of i.i.d. r.vs with E(|Y;|) < 0o. Let Y, = L 3°7Y;. Then Y, 23E(Y}).
(i) Example 1 above, assuming the X; are independent, given any k,

P(X, =n?, for some n > k) = 1, so X, does not converge almost surely to X = 7.

(i) C& B, P215: If 21 <n < 2", X,, = I((n—2""1)/2""1 (n+1—-27"1)/2r=1).
3.2.5 Convergence in distribution

Defn: A sequence of random variables X1, X2, ... converges in distribution to a random variable
X (Xy—>X) if limp—e0 Fx, (z) = Fx(z) at all points z at which Fx(z) is continuous.

Example 1 above (again): (with n > 3 say)

Fx () =0 r<T7+nt
" <
Fx, (r)=1-n1 7T4+nt<z<n? —){(1) z;;}
fx,(z)=1 n? <z

So the limit is equal to Fx (z) = I[7,,)(z) except at the discontinuity point z = 7.

Theorem X,,- X — XH&X

Proof:
Fx(zx—e€¢) = P(X<z—-¢) = PX<z-¢ X, <2)+P(X<z-—¢ X, >2)
< P(Xngx) +P(|X_Xn|>€) = FXH($)+5n
1-Fx(z+e) = PX>z+e€) = PX>z+e X, <z)+PX>z+¢ X, >2x)
< P(IX-X,|>¢€) + P(Xp,>z) = 6,+(1—Fx,(x))

where 6, = P(|X — X,| >¢) > 0asn — o0. So
Fx(z—¢) -6, < Fx,(x) < Fx(z+c¢€)+ 0, where §, — 0
But Fx(z +€) — Fx(z) as e = 0 is Fx is continous at z.

Lemma anm = X,-5X
Proof Given € > 0,

X, e = Fx,(z) > 0forz <c, Fx,(x) > 1forz>c
= PX,<c—¢€) —0, and P(X, >c+¢) =0
= P(|X, —c|>€ =0 or X,

10



3.2.6 Central limit theorem

Let Y7,Ys, ... be a sequence of i.i.d. r.vs with E(Y;) = , and 0 < var(¥;) = 02 < c0.

Let Yy, = L 7Y, Then v/n(Y, — p)/o =5 Z where Z ~ N(0,1).

Proof: (for the case when my;(t) exists for |t| < h, some h > 0.)

Let Z; = (Y; — p)/o, s0 E(Z;) =0, var(Z;) =1 and Z,, = (Y, — p)/o- _

Let m(t) be the m.g.f. of Z;, and let my,(t) be the m.g.f. of \/nZ, = /n(Y,, — u)/o. So

n

mn(t) = E(exp(vVnZnt)) = E(exp((t/vn))_Z)) = (m(t/vn))"

= 1+ (0)t/vn+im"(0)*/n+.)" = (1+0xt/y/n+3x1xt*/n+..)"
(1+8/n+..)" — exp(it?)

which is the m.g.f. of a N(0,1) r.v., so by the theorem about convergence of m.g.fs we have the
result.

3.3 Slutsky’s Theorem and the delta-method
3.3.1 Slutsky’s Theorem (with “sort-of” proof)

If X,—5X and Y, —2sc (a constant), and g(zx,y) is a continuous function, then g(X,, Yn)&g(X, c).

Note: The result is also true for vectors X,,, X in ®* and Y,,, ¢ in ® and functions g : R+ — R4,
Then (X,,Y,) is a r.v. of dimension k + [, and g(X,,Y,) is a d dimensional r.v.

Idea of proof: There are theorems due to Skorokhod (which are beyond this course) which say
that if XngX then there are r.vs X7, X* with the same distributions as each X,, and X, s.t.

X 22X
x :
So we have (Xn,Yn)&(X, c), so we transfer to (X%, Y*) 2% (X*, c).

Once we are in the world of a.s. convergence, everything about functions that is true in analysis is
also true here, so that g(X*,Y)*%g(X*, c).

But convergence a.s. implies convergence in dsn, so g(X}, Y;;)&g(X*,c).

But now we are only talking about the dsns of these r.v.s, so we can transfer back to the original
(non-star) ones with the same dsns, and g(X,, Yn)gg(X, c).

3.3.2 Corollary; the delta-method

Suppose /n(X, — ,u)&N(O, 0?) and g(z) is differentiable at = = p.
Then v/n(g(Xn) — 9(1))—>N (0, (¢'(1))*0?).
Proof: g(z) = g(n) + (z—p) ¢'(n) + O((z — p)?)

VR(g(Xy) —g(1) = Va(X, — p)g (1) + vVrO((Xn — 1)?)
= Vng' (1) (X, — p) + (vr) T O((Vn(Xn — 1))?)

and the first term converges in dsn to N (0, (¢'(1))?0?) and the second term converges in probability
to 0.

11



3.3.3 The multivariate delta-method
Suppose /n(X,, — u)&Nk(O, Y)and g: RF — R" is differentiable at x = p.
Then \/ﬁ(g(Xn)—g(,u))& N0, (Vg(u)2(Vg(p))?t), where Vg(p) is the rx k matrix of derivatives

gg;) evaluated at x = p.

3.3.4 Examples

(i) Propagation of variance.

Suppose Y; are i.i.d with mean y and variance o2, so that /n(Y, — u)&N(O, a?).

Then, taking g(z) = z !, and assuming p # 0, ¢'(z) = —2 2, so \/ﬁ(?n_l — ;fl)&N(O,a?;F‘l).
Or, taking g(z) = log(z), and assuming u > 0, ¢'(z) = 271, so \/ﬁ(log(vn)—log(u))&N(O, o?p=2)
(ii) Variance-stabilising transformations.

If we can choose g so that (¢'(u))?0? = 1, the limit distribution will be N (0, 1).

For example, if ¥; are i.i.d. P(0), so Y, ~ n 1P(nh), then \/n(Y,, — 9)&N(0, 0).

(4'(0))%0 =1 gives ¢'(0) = 07% or g(0) = 2v0. So 2/n(/(Y,) — ﬂ&))&N(O, 1).

Or, if ¥; are i.i.d. £()), so Yy, ~ G(n, A\/n), then /n(Y, — A)—5N(0, A2).

(g'(A)2X2 =1 gives g'(A\) = AL or g(A) = log A\. So /n(log(Y,) — 10g(0))£>N(0, 1).

3.4 Sample quantiles and order statistics

3.4.1 The empirical distribution function (edf).

3.4.2 The edf approach to convergence of sample quantiles

3.4.3 Relationship of sample of UJ[0,1] to i.i.d exponentials

3.4.4 1.i.d. exponentials approach to convergence of sample quantiles

3.5 Relationships among some standard distributions
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