Stat581: Fall 2004: Week 1 Quiz: solns

1 [4 pts]. $E(U^c) = \int_0^1 u^c du$ if the integral converges. The indefinite integral of u^c is $u^{c+1}/(c+1)$ if $c \neq -1$ and $log(u)$ if $c = -1$. So $E(U^c)$ is finite iff $c > -1$ and then is $1/(c+1)$.

2 [3 pts].

2(a) Let F_n be cdf of V_n and F be cdf of V, then $F_n(v) \to F(v)$ at all $v \in \Re$ at which F is continuous.

2(b) For all $\epsilon > 0$, $Pr(|V_n - V| > \epsilon) \longrightarrow 0$ as $n \to \infty$.

 $3\ [4\ \mathrm{pts}] \ \mathrm{For} \ \mathrm{small} \ \epsilon, \ \mathcal{J}^{\epsilon}_0$ $\int_0^{\epsilon} (x(1-x)^{-1+1/n} dx \ge (1/2) \int_0^{\epsilon} x^{-1+1/n} dx = n\epsilon^{1/n}/2 \rightarrow \infty$ as $n \to \infty$, so the normalizing const of this density $\to 0$. Hence $Pr(\epsilon < X_n < 1 - \epsilon) \rightarrow 0$. By symmetry $Pr(X_n < \epsilon) = Pr(X_n > 1 - \epsilon)$, $\forall n$. So $F_n(x) \to 1/2 = F(x)$ for $0 < x < 1$, as required.

4 [6 pts]. Note here we are given the joint dsn, since all are defined in terms of the single r.v. U.

4(a) $Pr(Y_n = 0) = 1 - 1/n$, so Y_n converges in probability to 0.

4(b) Hence it also converges in dsn to 0.

 $4(c) e_n = 1$ for all n. So $\lim(E(Y_n)) = 1 > 0 = E(\lim(Y_n))$ —an example of strict inequality in Fatou's lemma.

 ${\bf 5} \ [{\bf 2} \ {\bf pts}]. \ \ {\bf If} \ X_i, \ i=1,2,...n \ {\bf are \ i.i.d \ with} \ {\rm E}(X_i)=\mu \ {\bf and} \ {\rm var}(X_i)=\sigma^2<\infty,$ and $\overline{X}_n = n^{-1} \sum_{i=1}^n X_i$, then $\sqrt{n}(\overline{X}_n - \mu)$ converges in distribution to $N(0, \sigma^2)$.

- 6 [6 pts]
- 6(a) $T_n \sim Bin(n, p)$.
- 6(b) W_n converges in probability to p (Weak Law of Large Numbers).
- 6(c) $\sqrt{n}(W_n p)$ converges in dsn to $N(0, p(1-p))$, by CLT, see #5.

6(d) Direct computation of Fisher information gives lower bound as $p(1-p)/n$ – hence W_n is MVUE of p