Stat581: Fall 2004: Week 1 Quiz: solns

1 [4 pts]. $E(U^c) = \int_0^1 u^c du$ if the integral converges. The indefinite integral of u^c is $u^{c+1}/(c+1)$ if $c \neq -1$ and $\log(u)$ if c = -1. So $E(U^c)$ is finite iff c > -1 and then is 1/(c+1).

2 [3 pts].

2(a) Let F_n be cdf of V_n and F be cdf of V, then $F_n(v) \to F(v)$ at all $v \in \Re$ at which F is continuous.

2(b) For all $\epsilon > 0$, $\Pr(|V_n - V| > \epsilon) \longrightarrow 0$ as $n \to \infty$.

3 [4 pts] For small ϵ , $\int_0^{\epsilon} (x(1-x)^{-1+1/n} dx \ge (1/2) \int_0^{\epsilon} x^{-1+1/n} dx = n\epsilon^{1/n}/2 \to \infty$ as $n \to \infty$, so the normalizing const of this density $\to 0$. Hence $\Pr(\epsilon < X_n < 1-\epsilon) \to 0$. By symmetry $\Pr(X_n < \epsilon) = \Pr(X_n > 1-\epsilon), \forall n$. So $F_n(x) \to 1/2 = F(x)$ for 0 < x < 1, as required.

4 [6 pts]. Note here we are given the joint dsn, since all are defined in terms of the single r.v. U.

4(a) $Pr(Y_n = 0) = 1 - 1/n$, so Y_n converges in probability to 0.

4(b) Hence it also converges in dsn to 0.

4(c) $e_n = 1$ for all n. So $\lim(E(Y_n)) = 1 > 0 = E(\lim(Y_n))$ —an example of strict inequality in Fatou's lemma.

5 [2 pts]. If X_i , i = 1, 2, ...n are i.i.d with $E(X_i) = \mu$ and $var(X_i) = \sigma^2 < \infty$, and $\overline{X_n} = n^{-1} \sum_{i=1}^n X_i$, then $\sqrt{n}(\overline{X_n} - \mu)$ converges in distribution to $N(0, \sigma^2)$.

- 6 [6 pts]
- **6(a)** $T_n \sim Bin(n, p)$.

6(b) W_n converges in probability to p (Weak Law of Large Numbers).

6(c) $\sqrt{n}(W_n - p)$ converges in dsn to N(0, p(1-p)), by CLT, see #5.

6(d) Direct computation of Fisher information gives lower bound as p(1-p)/n - hence W_n is MVUE of p