
Stat 581 Homework 9: Outline solutions

1. (a)

Pr(Y = (X/θ)c ≤ y) = Pr(X ≤ θy1/c) =
∫ θy1/c

0

c

θ

(
x

θ

)c−1

e−(x/θ)c
dx

=
∫ y

0
e−wdw = 1− e−y substituting w = (x/θ)c, dw = cxc−1dx/θc

So (X/θ)c is E(1).

(b)

`n = n log c+ (c− 1)
n∑
1

log xi − nc log θ − θ−c
n∑
1

xc
i

∂`n
∂θ

= −nc
θ

+
c

θc+1

∑
i

xc
i ,

∂2`n
∂θ2

= +
nc

θ2
+
c(c+ 1)
θc+2

∑
i

xc
i

E

(
−∂

2`n
∂θ2

)
= −nc

θ2
+
c(c+ 1)
θ2

· n · 1, sinceE(Xc) = θcE(Y ) = θc · 1

I1(θ) = n−1In(θ) = θ−2(c2 + c− c) = c2/θ2.

(c) Constrained MLE is c = c0, θ = θ̃0 = n−1∑
i x

c
i .

∂`n
∂c

=
n

c
+
∑

i

log xi − n log θ −
∑

i

(
xi

θ

)c

log(xi/θ)

∂`n
∂(θ, c)

|θ̃0,c0
=

(
0

(n/c0) +
∑

i log(xi/θ̃0)−
∑

i(xi/θ̃0)c0 log(xi/θ̃0)

)

I(c, θ) =

(
c2/θ2 −(1− γ)/θ

−(1− γ)/θ (π2/6 + (1− γ)2)/c2

)
from JAW notes 3.13, as per question

So Icc.θ = Ic,c − I2
c,θ/Iθ,θ = c−2(π2/6 + (1− γ)2)− (1− γ)2θ2/(θ2c2) = π2/(6c2)

So Rn =
nπ2

6c20

(
1
c0

+
1
n

∑
i

(
1−

(
xi

θ̃0

)c0)
log(xi/θ̃0)

)2

If c0 = 1, θ̃0 = x and Rn =
nπ2

6

(
1 − 1

n

∑
i

(
xi − x

x

)
log(xi/x)

)2

(d) We would use the Rao statistic because the constrained MLE is (relatively) easy. The unconstrained
MLE is a mess.

2. (a) n1 =
∑

i I(object i is type 1), so by SLLN n1/n→a.s. θ
and by CLT

√
n((n1/n)− θ) →d N(0, θ(1− θ)).

(b)

`n = n1 log θ + n2 log(θ2 + θ4) + n3 log(1− θ − θ2 − θ4)
∂`n
∂θ

=
n1

θ
+

2n2(1 + 2θ2)
θ(1 + θ2)

− n3(1 + 2θ + 4θ3)
1− θ − θ2− θ4

I(θ) =
∑
j

1
pj(θ)

(
∂pj

∂θ

)2

=
1
θ

+
4(1 + 2θ2)2

(1 + θ2)
+

(1 + 2θ + 4θ3)2

1− θ − θ2− θ4
.
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(c) Note P (n1, n2) = P (n1)P (n2|n1) with n3 = n− n1 − n2. `n = logP (n1) + logP (n2|n1).
Now E(− ∂2

∂θ2 logP (n1)) = n/(θ(1− θ)) = 1/var(T ) where T = n1/n

and (n2|n1) is B(n1, (θ2 + θ4)/(1− θ)), so E(− ∂2

∂θ2 logP (n2|n1)) > 0
so var(T ) > 1/In(θ). T is not efficient (even asymptotically).

(d) However, the one-step estimator will be efficient, since
n1/4(T − θ) = n−1/4(

√
n(T − θ)) →p 0. This one-step estimator is

T ∗ = T − (−nI(T ))−1
(
∂`n
∂θ

|θ=T

)
= T + n−1

(
n1

T
+

2n2(1 + 2T 2)
T (1 + T 2)

− n3(1 + 2T + 4T 3)
1− T − T 2 − T 4

)
/

(
1
T

+
4(1 + 2T 2)2

1 + T 2
+

(1 + 2T + 4T 3)2

(1− T − T 2 − T 4)

)

This is messy, but there is nothing difficult about computing it.

3. (a) Zi = I(Xi ∼ P(λ)), 1− Zi = I(Xi ∼ P(µ)), Pr(Zi = 1) = θ. Let N1 =
∑

i Zi =
∑

S1
1.

`c(θ, λ, µ;x, z) = const +
∑
S1

xi log λ− λN1 +
∑
S2

xi logµ− µ(n−N1)

which is of exponential family form with min suff statistic (
∑

S1
xi,
∑

S2
xi, N1).

(b) Let πi = E(Zi|Xi) = Pr(i ∈ S1 | xi).

T1 =
∑
S1

xi, E(T1) = nλθ, E(T1 | X) =
∑

i

πixi

T2 =
∑
S2

xi, E(T2) = nµ(1− θ), E(T2 | X) =
∑

i

(1− πi)xi

T3 =
∑
S1

1, E(T3) = nθ, E(T3 | X) =
∑

i

πi

EM eqns: θ̃ =
∑

i

π∗i /n, λ̃ =
∑

i πixi/
∑

i πi µ̃ =
∑

i

∑
i

(1− πi)xi/
∑

i

(1− π)

where πi(λ∗, µ∗, θ∗) = Pλ∗,µ∗,θ∗(Zi = 1 | Xi) =
(λ∗)xi exp(−λ∗)θ∗

(λ∗)xi exp(−λ∗)θ∗ + (µ∗)xi exp(−µ∗)(1− θ∗)

(c) Works well for both samples, even though 1 is more clearly a mixture:
(Or maybe sample 2 is not estimated a mixture?)
Sample 1: λ̂ = . . ., µ̂ = . . ., θ̂ = . . ..
Sample 2: λ̂ = . . ., µ̂ = . . ., θ̂ = . . ..

4 (a) y = z + e, f(y, z) = f(y|z)f(z), (Y |z) ∼ Nn(z, τ2I), Z ∼ Nn(0, σ2G).

`c(σ2, τ2) = −(n/2) log τ2 − (1/2τ2)e′e − (n/2) log σ2 − 1
2

log detG− (1/2σ2)z′G−1z + const

∂`c
∂σ2

= − n

2σ2
+

1
2

(
1
σ2

)2

z′G−1z, σ̃2 = z′G−1z/n

∂`c
∂τ2

= − n

2τ2
+

1
2

(
1
τ2

)2

e′e, τ̃2 = n−1e′e = n−1(y − z)′(y − z)

(b) As a function of z

f(y, z) = . . . exp(− 1
2τ2

(y − z)′(y − z) − 1
2σ2

z′G−1z)
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∝ exp(−1
2
((z′(τ−2I + σ−2G−1)z) − 2y′z/τ2))

So var(z|y) = (τ−2I + σ−2G−1)−1 = σ2τ2(σ2I + τ2G−1)−1

= σ2τ2(σ2G+ τ2I)−1G = σ2τ2V −1G = W

a = E(z|y) = (τ−2I + σ−2G−1)−1(y/τ2) = σ2V−1Gy

(c)
E(zG−1z|y) = a′G−1a + tr(WG−1) = a′G−1a + σ2τ2tr(V−1)

E((y − z)′(y − z)|y) = (y − a)′(y − a) + tr(W) = (y − a)′(y − a) + σ2τ2tr(V−1G)

So EM is τ̃2 = n−1((y − a)′(y − a) + σ∗2τ∗2tr(V−1G))

σ̃2 = n−1(a′G−1a + σ∗2τ∗2tr(V−1))
where a = σ∗2V −1Ga, and V = (τ∗2I + σ∗2G)

Note: One reason why this is computationally effective on huge sets of related individuals (e.g. millions
of dairy cows) is that G−1 is sparse, and that if λj are the eigenvalues of G, then eigenvalues of V
are (τ2 + σ2λj) and of V −1 are (τ2 + σ2λj)−1 and of V −1G are λj/((τ2 + σ2λj), so the λj need to be
computed once-only to implement EM.

5. (a)

p(x, y) =
∑
w

Pr(X = x, Y = y,W = w) =
∑
w

Pr(U = x− w, V = y − w,W = w)

=
∑
w

Pr(U = x− w)Pr(V = y − w)Pr(W = w)

= exp(−(λ+ µ+ ψ))
min(x,y)∑

w=0

λx−wµy−wψw

w!(x− w)!(y − w)!

E(W | X = x, Y = y) =
∑
w

wPr(U = x− w)Pr(V = y − w)Pr(W = w)/p(x, y)

= exp(−(λ+ µ+ ψ))
min(x,y)∑

w=0

λx−wµy−wψw

(w − 1)!(x− w)!(y − w)!
/p(x, y)

= exp(−(λ+ µ+ ψ))
min(x,y)∑

w=0

ψ
λ(x−1)−(w−1)µ(y−1)−(w−1)ψw−1

(w − 1)!((x− 1)− (w − 1))!((y − 1)− (w − 1))!
/p(x, y)

= ψp(x− 1, y − 1)/p(x, y)

(b) Actual data are (xi, yi; i = 1, . . . , n).
At current parameter estimates, compute wi = E(W |X = xi, Y = yi) from (a), for each i.
Set ui = xi − wi, vi = yi − wi.
Re-estimate λ̃ =

∑
i ui/n, m̃u =

∑
i vi/n, ψ̃ =

∑
iwi/n.

Repeat and repeat.

(c) When ψ = 0, Pr(W = 0) = 1, X ≡ U ∼ P(λ), Y ≡ V ∼ P(µ), and U and V (hence X and Y ) are
independent. Constrained estimates of λ and µ are thus just averages of Xi and of Yi, respectively.
We would prefer the Rao test, because we can find these constrained MLE’s. The unconstrained ones
we could find numerically by EM, but why do that if we don’t have to? However, note ψ = 0 is on
the boundary of the parameter space, so we wd have to be careful about the asymptotic dsn of any of
our likelihood-based statistics.

(d),(e) See JAW Chapter 4, example 3.8: Pp. 4.21-4.22
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