
Stat 581,2004: Homework 5: Outline solutions

1. (a) We find that
∏n

1 xi is maximized s.t.
∑n

1 xi = K when all the xi are equal, so
Gn

n =
∏n

1 xi ≤ xn
n, so Gn ≤ An. Repeating with 1/xi in place of xi we get G−1

n ≤ H−1
n .

So for all real positive values of xi, Hn ≤ Gn ≤ An, and hence for non-negative random variables
Xi with probability 1.

(b) If E|Xi| < ∞, E(1/|Xi|) < ∞, and E| log(Xi)| < ∞, and E(Xi) = a, E(1/Xi) = h−1, and
E(log(Xi)) = log(g) then, by SLLN,
(An, log(Gn), 1/Hn) →a.s. (a, log(g), h−1), Then , by continuous mapping theorem (An, Gn,Hn) →a.s.

(a, g, h). (Hence also converges in probability.)

(c) If also EX2
i < ∞, E((1/Xi)2) < ∞, and E(log(Xi)2 < ∞, then by the multivariate CLT
√

n(An − a, log(Gn)− log(g), H−1
n − h−1) →d Z ∼ N3(0,Σ)

where Σ11 = var(Xi), Σ12 = Cov(Xi, log(Xi)), Σ13 = Cov(Xi, 1/Xi), etc.
Now use δ-method, with v(x, y, z) = (x, exp(y), 1/z),
so 5v = diag(1, exp(y),−z−2) = diag(1, g,−h−2) at the mean point, and

√
n(An − a, Gn)− g, Hn − h) →d (5v) · Z ∼ N3(0, (5v)Σ(5v)′)

2. Zi = min(Xi, Yi), δi = I(Xi ≤ Yi), fX,Y (x, y) = f(x; θ)g(y).
(a) On Z = z, δ = 1, pdf = f(z; θ)g(y) on y > z) integrates to f(z; θ)(1−G(z)).
On Z = z, δ = 0, pdf = f(x; θ)g(z) on x > z) integrates to g(z)(1− F (z; θ)).
Together: h(z, δ; θ) = (f(z; θ)(1−G(z)))δ(g(z)(1− F (z; θ)))1−δ.

(b)

log h = δ log f + δ log(1−G) + (1− δ) log g + (1− δ) log(1− F )
= −δ(log θ + Z/θ) + . . . − (1− δ)Z/θ

∂ log h

∂θ
= −δ/θ + Z/θ2

∂2 log h

∂θ2
= δ/θ2 − 2Z/θ3

Now E(δ) = P (X ≤ Y ) =
∫

F (y)g(y)dy =
∫
(1− exp(y/θ))g(y)dy.

Also E(∂ log h/∂θ) = 0 gives E(Z) = θE(δ).
So I1(θ) = θ−3(2θE(δ)− θE(δ)) = E(δ)/θ2. For an n-sample, In(θ) = nI1(θ) = nEδ/θ2.
CRLB = 1/In(θ) = θ2/n(

∫
(1− e−y/θ)g(y)dy)

Note this makes sense: if observe all the Xi, info is n/θ2 and we expect to observe a proportion E(δ)
of them.

3. (a) pθ(x) = θf1(x) + (1− θ)f2(x).

∂ log p

∂θ
=

f1(x)− f2(x)
pθ(x)

so

I1(θ) = E

((
∂ log p

∂θ

)2
)

=
∫ (f1(x)− f2(x))2

pθ(x)
dx

In(θ) = nI1(θ), var(T ) ≥ 1/In(θ), if E(T ) = θ.
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(b) Let Si be the support of fi: S1 ∩ S2 = Φ.

I1(θ) =
∫

S1

f2
1

θf1
dx +

∫
S2

f2
2

(1− θ)f2
dx

= θ−1 + (1− θ)−1 = 1/θ(1− θ)

(c) Regarding this as a missing data problem (see JAW 3.10, as per hint)

Yi = (Xi, δi), δi = 1, 0 as Xi ∼ f1, f2

qθ(x, δ) = (f1(x)θ)δ(f2(x)(1− θ))1−δ

log q = const + δ log θ + (1− δ) log(1− θ)
∂ log q

∂θ
=

δ

θ
− 1− δ

1− θ
,

∂2 log q

∂θ2
= − δ

θ2
− 1− δ

(1− θ)2
, I

(q)
1 (θ) = 1/θ(1− θ)

Now
∂ log p

∂θ
=

f1(x)− f2(x)
pθ(x)

= E
(

∂ log q

∂θ
| X = x

)
since E(δ|X = x) =

θf1(x)
pθ(x)

So E

((
∂ log p

∂θ

)2
)

= E

(
E
(

∂ log q

∂θ
| X

)2
)

≤ E

(
E
(

∂ log q

∂θ

)2

| X

)
= E

((
∂ log q

∂θ

)2
)

4. (a) K ∼ P(µB), so `(µ) = const − µB + K(log(µ) + log(B)), so µ̂ = K/B which has variance
B−2(µB) = µ/B.

(b) Presence and observation of plants are independent, so this is still a (now non-homogeneous)
Poisson process. Expected number of plants observed is 2

∫∞
0 exp(−λx)(µL)dx = 2µL/λ.

Further, Pr(x|observed) ∝ Pr(obs |x)Pr(x) ∝ exp(−λx), so normalizing the density we have
fX(x;λ) = λ exp(−λx).

(c) The likelihood for (µ, λ) is

Pr(K = k; 2µL/λ)fλ(x1, . . . , xk|K = k) ∝
(

mu

λ

)k

exp
(
−2µL

λ

) k∏
1

λ exp(−λxi)

= µk exp(−2µL

λ
− λ

k∑
i=1

xi)

(d) ` = k log(µ) − 2µL/λ − λ
∑

i xi and solving the likelihood equations gives λ = (x)−1 and
µ = kλ/2L. Taking negative of expected second derivatives gives the information matrix (inverse of
asymptotic variance-covariance matrix) as Iµµ = 2L/λµ, Iµλ = − 2L/λ2, and Iλλ = 4µL/λ3.

(e) If B = 2L/λ, Iµµ = B/µ, confirming (a).
Then Iµµ·λ = (B/µ) − (B/λ)2(λ2/2µB) = B/(2µ), so exactly one half the information about µ is
lost by the need to estimate λ.
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