Homework 1: Outline solutions

1. (a) Draw a picture: easiest to separate into x < y, v < 0 and $x \ge y$, $v \ge 0$. The the range of values (v, w) of (V, W) is

$$\{(v,w): \ -1 \leq v < 0, \ -v \leq w \leq 1\} \ \cup \ \{(v,w); \ 0 \leq v \leq 1, \ v \leq w \leq 1\}$$

(b) If transforming the density, again separate into x > y and x < y. The e.g. on x > y inverse transformation is X = W, Y = W - V, note this mapping is continuously differentiable, and don't forget the Jacobian (even though it turns out to be 1).

Easier, is direct use of the distribution function

$$\begin{split} P(V \le v, \ W \le w) &= \Pr(X - Y \le v, \ \max(X, Y) \le w) \\ &= \Pr(Y \ge X - v, X \le w, Y \le W) \\ &= \begin{cases} w^2 - \frac{1}{2}(w - v)^2, & \text{if } 0 \le v \le w \le 1 \\ \frac{1}{2}(v + w)^2, & \text{if } -1 \le v < 0, \ 0 < -v \le w \le 1. \end{cases} \end{split}$$

Use your picture!

Differentiating w.r.t v and w gives the uniform density 1 on the range of (V, W).

(c) No, they cannot be independent since the ranges are not separable: we know $|v| \leq w$.

2. (a) The sequence of random variables V_n converges in distribution to U(0,1) since

 $\Pr(V_n \leq x) = \lfloor nx \rfloor / n \rightarrow x \text{ as } n \rightarrow \infty$

for 0 < x < 1. (Draw a picture!)

For convergence in probability there is insufficient information to say. We do not know the joint dsn of the V_n nor even that they are defined on the same probability space.

(b) There are various ways to do this. This one comes from Ferguson.

Let $\epsilon > 0$ and $k > 2/\epsilon$ (an integer). Since F is continuous, can choose x_j s.t. $F(x_j) = j/k, j = 1, ..., k - 1$. Since $F_n(x_j) \to F(x_j), \exists N_j$ s.t. $|F_n(x_j) - F(x_j)| < 1/k$ for all $n > N_j$. Now consider $n > N = \max(N_1, ..., N_{k-1})$, and $x_j \le x < x_{j+1}$, with $x_k = \infty$:

$$F_n(x) \leq F_n(x_{j+1}) \leq F(x_{j+1}) + 1/k \leq F(x) + 2/k$$

$$F_n(x) \geq F_n(x_j) \geq F(x_j) - 1/k \geq F(x) - 2/k$$

Hence $|F_n(x) - F(x)| \leq 2/k < \epsilon$ for all n > N and for all x.

3. (a) Checking the integral

$$\int_0^1 \int_0^1 f_{\theta}(v, w) dv dw = 1 \quad \text{for all real } \theta$$

we see that all we need is $f_{\theta}(v, w) \ge 0$ for all (v, w) in unit square, which by monotonicity of (1 - 2v) will hold iff it holds at the corners (0,0), (0,1), (1,0) and (1,1) of the square, or for $|\theta| \le 1$.

(b) The corresponding distribution function F_{θ} is given by

$$F_{\theta}(v,w) = \int_0^v \int_0^w f_{\theta}(x,y) dx dy$$

= $vw(1 + \theta(1-v)(1-w))$

Note that

$$F_{\theta}(v,1) = v$$
 and $F_{\theta}(1,w) = w$,

so each of V and W has a uniform U(0,1) marginal distribution.

(c) Now E(V) = E(W) = 1/2 and var(V) = var(W) = 1/12, Then direct integration gives

$$Cov(V,W) = \int_0^1 \int_0^1 vw f_{\theta}(v,w) dv dw - (1/2)^2 = \theta/36$$

and hence

$$\rho(V, W) = \frac{\operatorname{Cov}(V, W)}{\sqrt{\operatorname{var}(V)\operatorname{var}(W)}} = \theta/3$$

Thus $|\rho(V, W)| \leq 1/3$, which limits the range of correlation between two U(0, 1) random variables that can be provided by this simple family.

4. (a) $E(Y_n) = \theta/2$ and $var(Y_n) = \theta^2/12$, hence immendiately by the CLT, V_n does converge in distribution, and it converges to $N(0, \theta^2/12)$.

(b)
$$\Pr(Y_n) > y) = 1 - y/\theta$$
, so $\Pr(\min(Y_n) > y) = (1 - y/\theta)^n$. Then

$$P(W_n > w) = \Pr(\min(Y_n) > y/n) = (1 - y/n\theta)^n$$

$$\to \exp(-y/\theta) \text{ as } n \to \infty$$

Thus W_n does converge in distribution. It converges to an exponential random variable with mean θ .