Stat 581 Homework 7: Due November 24, 2004

- 1. (a) Suppose $X_1, ..., X_n$ are i.i.d. $U(\theta \psi, \theta + \psi)$. Find the minimal sufficient statistic for (θ, ψ) and the MLE of (θ, ψ) .
- (b) Suppose $X_1, ..., X_n$ are i.i.d. double exponential, each with pdf $f_{\theta}(x) = \frac{1}{2} \exp(-|x \theta|)$. Find the minimal sufficient statistic and the MLE of θ .
- 2. Suppose $X_1, ..., X_n$ are i.i.d. from a distribution symmetric about a location parameter θ and with a strictly positive density over the range of X_i . It is proposed to estimate θ by the average of the pth and (1-p)th sample quantiles, $T_n^{(p)} = \frac{1}{2}(F_n^{-1}(p) + F_n^{-1}(1-p))$, where F_n is the empirical distribution function of $X^{(n)} = (X_1, ..., X_n)$.
- (a) Show that the sequence $(T_n^{(p)})$ is consistent for θ , for 0 .
- (b) Compare the ARE of sequences of estimators $(T_n^{(p)})$ of θ for varying p the answer will depend on the density function. How should p be chosen to maximize asymptotic efficiency?
- (c) Evaluate your answer to 2(b) for the two examples of 1(a) and 1(b).
- 3. Suppose that $X_1, ..., X_n$ are i.i.d. from the Poisson distribution with mean $\theta > 0$:

$$P(X_1 = k) = \exp(-\theta)\theta^k/k! \quad k = 0, 1, 2, 3, \dots$$

Let $\widehat{\theta_n} = \overline{X_n} = n^{-1} \sum_{i=1}^n X_i$. Two alternative estimators of $P(X=1) = \theta e^{-\theta}$ are proposed:

$$\widehat{P_{1,n}} = \widehat{\theta_n} \exp(-\widehat{\theta_n})$$
 and $Z_n = n^{-1} \sum_{i=1}^n I(X_i = 1)$.

- (a) Let $W_i \equiv (X_i, I(X_i = 1))$. Note $(\overline{X_n}, Z_n) = n^{-1} \sum_{i=1}^n W_i \equiv \overline{W_n}$. Find the limiting distribution of $n^{\frac{1}{2}}(\overline{W_n} (\theta, \theta e^{-\theta}))$.
- (b) Hence find the limiting distribution of $n^{\frac{1}{2}}((\widehat{P_{1,n}},Z_n)-(\theta e^{-\theta},\theta e^{-\theta}))$.
- (c) Find the asymptotic relative efficiency (A.R.E.) of the sequence (Z_n) relative to $(\widehat{P_{1,n}})$ as estimators of $\theta e^{-\theta}$. Which sequence of estimators is more efficient?
- 4. Let (X_i, Y_i) , i = 1, ..., n be i.i.d. bivariate normal, with $E(X_i) = E(Y_i) = 0$, $var(X_i) = var(Y_i) = 1$ and $Cov(X_i, Y_i) = \rho$. Find the likelihood equation for estimation of ρ . Show that it always (with probability 1) has at least one solution in (-1,1), and that the solution is unique for large enough values of n.
- 5. Under a random genetic drift model for the changes of frequencies of certain types of genes as a finite-size population evolves, certain functions of these allele frequencies may be assumed to undergo independent Brownian motions. Hence, if initially the values of these frequency functions is $(\theta_1,\ldots,\theta_q)$, after a period of time, and after taking a random sample from the current population, the sample values of these functions will be (X_1,\ldots,X_q) , where the X_i are independent and $X_i \sim N(\theta_i, \sigma_x^2)$, where σ_x^2 depends on the population size, the sample size, and the time period over which the population evolves.

Thompson (1973: Ann. Hum Genet. 37: 69-80) used this model to estimate the proportions of Norse and Celtic individuals in the founding population of Iceland in about 900 A.D. For simplicity we will

1

here assume that the relative σ^2 values for the three populations are known and equal (not realistic), and so we can scale to take $\sigma^2 = 1$. Thus for the samples from the current Scandinavian (formerly Norse) population we have $X_i \sim N(\theta_i, 1)$; for the current Irish (Celtic) population samples we have $Y_i \sim N(\psi_i, 1)$; and for the Icelandic sample we have $Z_i \sim N(r\theta_i + (1-r)\psi_i, 1)$, where $i = 1, \ldots, q$ and all components of all three q-vectors X, Y, and Z are independent. The parameter r (the proportion of Norse ancestry) is of interest, but of course θ and ψ are unknown.

(a) Define W(r) = Z - rX - (1 - r)Y, and $h(r) = 1 + r^2 + (1 - r)^2 = var(W_i(r)), i = 1, \dots, q$. Show that the likelihood equations may be written in the form

$$\theta - X = rW(r)/h(r)$$

$$\psi - Y = (1 - r)W(r)/h(r)$$

$$(Z - r\theta - (1 - r)\psi)^{t}(\theta - \psi) = 0$$

(b) Hence show that

$$(Z - r\widehat{\theta} - (1 - r)\widehat{\psi}) = W(r)/h(r)$$

and that maximization of the likelihood is equivalent to maximization of $S(r) = -W(r)^t W(r)/h(r)$.

(c) Hence or otherwise show that the likelihood equation for r is

$$g(r) = r^2(d_{xz}^2 - d_{yz}^2) + 2r(d_{yz}^2 - d_{xy}^2) + (d_{xy}^2 - d_{xz}^2) = 0$$

and that S'(r) has the same sign as g(r). Here $d_{xy}^2=(x-y)^t(x-y)$ is Euclidean distance in q-dimensional space, and you are reminded of the cosine formula $2(x-z)^t(y-z) = d_{xz}^2 + d_{yz}^2 - d_{xy}^2$.

- (d) Hence find the MLE of r in $0 \le r \le 1$ in the three cases when $d_{xz} > d_{yz}$
- (i) $d_{xz} > d_{xy} > d_{yz}$
- (ii) $d_{xy} > d_{xz} > d_{yz}$
- (iii) $d_{xz} > d_{yz} > d_{xy}$

(The three cases with $d_{yz} > d_{xz}$ would be given by symmetry, reversing the role of Norse and Celtic populations.)