Stat 581 Homework 5: Due November 10, 2004

1. Suppose that $X_1, ..., X_n$ are i.i.d. positive random variables with distribution function F on $(0, \infty)$. Let A_n, H_n and G_n denote the arithmetic, harmonic and geometric means of the X_i , respectively.

$$A_n = n^{-1} \sum_{i=1}^n X_i, \quad G_n = \left(\prod_{i=1}^n X_i\right)^{1/n}, \quad H_n = \left(n^{-1} \sum_{i=1}^n \frac{1}{X_i}\right)^{-1}.$$

- (a) Show that, with probability 1, $A_n \ge G_n \ge H_n$.
- (b) Suppose that if $X \sim F$, $E(X) < \infty$, $E(1/X) < \infty$ and $E(|\log(X)|) < \infty$.

Show that $(A_n, G_n, H_n) \to_p (a, g, h)$, for some constants a, g and h, and express these constants as expectations of functions of X.

(c) Specify additional conditions on expectations of functions of X under which it true that

$$n^{\frac{1}{2}}((A_n, G_n, H_n) - (a, g, h)) \rightarrow_d (Z_1, Z_2, Z_3)$$

where $\mathbf{Z} = (Z_1, Z_2, Z_3)$ is a non-degenerate random variable. Specify also the distribution of \mathbf{Z} .

2. Let $X_1, ..., X_n$ be i.i.d. positive random variables with density $f(x; \theta) = \theta^{-1} \exp(-x/\theta)$ and cdf $F(x; \theta)$. Let $Y_1, ..., Y_n$ be i.i.d. with known density g and cdf G. Suppose the vector of X_i are independent of the vector of Y_i .

Suppose we observe $Z_i = \min(X_i, Y_i)$ and $\delta_i = I\{X_i \leq Y_i\}$. (You may want to think of the X_i as survival times and the Y_i as censoring times.)

(a) Show that the pairs (Z_i, δ_i) are i.i.d. with density

$$h(z,\delta) \ = \ (f(z;\theta)(1-G(z)))^{\delta}(g(z)(1-F(z;\theta))^{1-\delta} \quad \ \delta = 0,1; \ 0 < z < \infty$$

- (b) Find the Fisher information $I(\theta)$ based on observing (Z_i, δ_i) , i = 1, ..., n and the resulting lower bound for the variance of unbiased estimators of θ .
- 3. Let X have density $\theta f_1(x) + (1-\theta)f_2(x)$ where f_1 and f_2 are known densities not depending on θ .
- (a) Compute the information inequality lower bound on the variance of unbiased estimators of θ based on a sample of n observations.
- (b) Show that the bound reduces to the bound from a sample from Bernoulli $Bin(1, \theta)$ r.vs when the suports of f_1 and f_2 do not overlap.
- (c) More generally, show that the information is bounded above by the value for case (b). (Hint: See JAW Ch 3., P. 3.10.)
- 4. Plants of a certain species are randomly distributed throughout an (effectively infinite) area. That is, the number of plants in any area A is Poisson with mean μA . It is desired to estimate μ .
- (a) Suppose a plot of area B is extensively surveyed, and k plants are found. Find the MLE of μ . What is the variance of this estimator?
- (b) Alternatively, a surveyor walks a straight-line transect of length L, looking to both sides (but not ahead or behind). A plant at perpendicular distance x from the transect line has probability

 $\exp(-\lambda x)$ of being observed. Show that the number of plants is again Poisson, with mean $2\mu L/\lambda$, and the density of the distance of an observed plant from the transect line is $\lambda \exp(-\lambda x)$, independently for each plant. (You may assume that independent thinning of a Poisson Poisson process is a Poisson process.)

(c) Suppose the surveyor observed k plants at distances $x_1, ..., x_k$ from the transect line. Show that the likelihood of (μ, λ) is proportional to

$$\mu^k \exp(-\frac{2\mu L}{\lambda} - \lambda \sum_{i=1}^k x_i)$$

- (d) Find the MLE of (μ, λ) and determine the asymptotic variance of the estimator. (You need not invert the information matrix.)
- (e) Suppose that the expected number of plants is the same in both observational schemes, so that $B = 2L/\lambda$. In estimating μ , how much information is lost, compared to the survey method (a), due to the necessity of estimating λ in the transect method (b).