Stat 581 Homework 4: Due October 27, 2004

You may quote standard results and theorems, but should be specific about which one(s) you are citing, and why.

1. Let X_n n=1,2,3,... be independent random variables defined on a common probability space Ω and such that

$$P(X_n = n^{\alpha}) = \frac{1}{n}$$
 and $P(X_n = 0) = 1 - \frac{1}{n}$ $n = 1, 2, ...$

where α is a constant. Find the values of α , $-\infty < \alpha < \infty$, for which

- (a) X_n converges to 0 in probability,
- (b) X_n converges to 0 a.s.
- (c) X_n converges to 0 in r th moment, for given r > 0.

(Hint: See Homework 2, #1)

2. Let $X_1, ..., X_n$ be i.i.d. with continuous density f. Let

$$f_n(x) = \frac{F_n(x+b_n) - F_n(x-b_n)}{2b_n}$$

where F_n is the empirical distribution function of $X_1, ..., X_n$. Thus f_n can be thought of as an empirical density estimate.

- (a) Show that $E(f_n(x)) \rightarrow f(x)$ if $b_n \rightarrow 0$.
- (b) Show that $var(f_n(x)) \to 0$ if $b_n \to 0$ and $nb_n \to \infty$.
- (c) Show that (under suitable conditions) $(2nb_n)^{\frac{1}{2}}(f_n(x) \mathbb{E}(f_n(x))) \to_d N(0, f(x))$
- (d) Find conditions under which $E(f_n(x))$ can be replaced by f(x) in (c).
- (e) Find the limiting distribution of $(f_n(x))^{\frac{1}{2}}$ suitably normalized.

Note: $(f_n(x)^{\frac{1}{2}} - f(x)^{\frac{1}{2}})$ is called a rootogram.

- 3. Based on Ferguson. P.24 # 4, and JAW Problems 3 #1
- (a) Ferg. P.24 #4: Show that the SLLN fails, and hence that $\widehat{I_n}$ is likely not a good estimator of I.
- (b) Generalize the integral I of (a) to

$$I_{\alpha} = \int_{1}^{\infty} x^{-\alpha} \sin(2\pi x) dx$$

Construct the corresponding estimator $\widehat{I_{n,\alpha}}$, using the same change-of-variable as in (a). For what values of α will the estimator $\widehat{I_{n,\alpha}}$ converge to I_{α} a.s. Hint: bound $g(y)\sin(2\pi/y)$ by g(y).

(c) For what values of α will $n^{\frac{1}{2}}(\widehat{I_{n,\alpha}}-I_{\alpha})$ converge in distribution, and to what? (Same hint: you need not find the limiting variance explicitly.)

4. Let $(X_i, Y_i)'$, i = 1, ..., n be i.i.d. bivariate r.v.s with mean (0, 0)' and $var(X_i) = var(Y_i) = 1$, $Cov(X_i, Y_i) = \rho$.

Let S_{ZW} denote $n^{-1}\sum_{i=1}^n Z_iW_i$, and $R=S_{XY}/\sqrt{S_{XX}S_{YY}}$. We investigate R as an estimator of ρ . Assume $\mathrm{E}(X^4)<\infty$, $\mathrm{E}(Y^4)<\infty$.

(a) Show that

$$\sqrt{n}(S_{XY} - \rho, S_{XX} - 1, S_{YY} - 1)' \rightarrow_d (Z_1, Z_2, Z_3)' \sim N_3(0, \Sigma)$$

where $\Sigma_{11} = E(X^2Y^2) - \rho^2$, $\Sigma_{12} = E(X^3Y) - \rho$, $\Sigma_{22} = E(X^4) - 1$, $\Sigma_{23} = E(X^2Y^2) - 1$.

- (b) Show that $n^{\frac{1}{2}}(R-\rho) \to_d (Z_1-\rho(Z_2+Z_3)/2)$.
- (c) Show that if X_i and Y_i are independent then $n^{\frac{1}{2}}(R-\rho) \to_d N(0,1)$ regardless of the underlying distribution (subject to the inital assumptions $\mathrm{E}(X^4) < \infty$ etc.).
- (d) Show that if (X_i, Y_i) is bivariate Normal, $\Sigma_{11} = 1 + \rho^2$, $\Sigma_{12} = 2\rho$, $\Sigma_{22} = 2$, $\Sigma_{23} = 2\rho^2$, and hence that $n^{\frac{1}{2}}(R \rho) \to_d N(0, (1 \rho^2)^2)$.
- (e) Suppose (X_i, Y_i) is bivariate Normal, and let $g(x) = \frac{1}{2} \log((1+x)/(1-x))$, V = g(R), $\xi = g(\rho)$. Show that, if (X_i, Y_i) is bivariate Normal, $n^{\frac{1}{2}}(V \xi) \to_d N(0, 1)$.
- 5. Let $X_1,...,X_n$ be i.i.d. with mean μ and k th central moment $\mu_k=\mathrm{E}((X_1-\mu)^k)$, and assume $\mu_{2k}<\infty$.

Define $B_k = n^{-1} \sum_{i=1}^n (X_i - \mu)^k$, and $M_k = n^{-1} \sum_{i=1}^n (X_i - \overline{X_n})^k$, where $\overline{X_n} = n^{-1} \sum_{i=1}^n X_i$.

- (a) Show $B_k \to \mu_k$ a.s.
- (b) Show that $n^{\frac{1}{2}}((B_1,...,B_k)'-(0,\mu_2,...,\mu_k)')$ is asymptotically (jointly) normal with mean **0** and variance **V** where $V_{ij} = \mu_{i+j} \mu_i \mu_j$.
- (c) Show that $M_k = \sum_{j=0}^k \frac{k!}{j!(k-j)!} (-1)^{k-j} B_j B_1^{k-j}$, and deduce that $M_k \to \mu_k$ a.s.
- (d) Show that

$$n^{\frac{1}{2}}((M_i - \mu_i) - (B_i - \mu_i - i\mu_{i-1}B_1))$$

converges in probability to 0 as $n \to \infty$.

- (e) Deduce that $n^{\frac{1}{2}}(M_2 \mu_2,, M_k \mu_k)'$ is asymptotically Normal $N_{k-1}(\mathbf{0}, \Sigma)$ where $\sigma_{ij} = \mu_{i+j+2} (i+1)\mu_i\mu_{j+2} (j+1)\mu_{i+2}\mu_j + (i+1)(j+1)\mu_i\mu_j\mu_2 \mu_{i+1}\mu_{j+1}$.
- (f) Determine the asymptotic distribution of $G_2 \equiv (M_4/M_2^2 3)$, in the case where X_i has a symmetric distribution having $\mu_4/\mu_2^2 = 3$. (For example, if X_i are Gaussian.)