Stat 581 Homework 3: Due October 20, 2004

- 1. A sequence of real-valued random variables $X_1, X_2, ...$, is exchangeable if, for any finite k, $(X_1, ..., X_k)$ has the same distribution as $(X_{\pi(1)}, ..., X_{\pi(k)})$ where $(\pi(j), j = 1, ...k)$ is any permutation of (1, 2, ..., k).
- (i) Consider an infinite sequence $X_1, X_2...$, of exchangeable random variables having finite second moments. Show that the correlation $\rho(X_i, X_j) \geq 0$ for all i, j.

(Hint: consider $var(X_1 + X_2 + + X_k)$.)

(ii) Given any ρ , $0 \le \rho \le 1$, show that there exists an exchangeable sequence such that $\rho(X_i, X_j) = \rho$ for all i, j.

(Hint: consider sequences of the form $X_i = Y + Z_i$.)

- 2. Let $f(x;\theta)$ be a density on $a(\theta) \le x \le b(\theta)$, where (for (a)-(c)) θ takes values in a non-degenerate interval. and let $X_1, ..., X_n$ be a sample from this density.
- (a) Suppose $b(\theta) \equiv b$. Show that $X_{(1)} = \min(X_i)$ is sufficient if and only if $f(x;\theta) = g(x)/h(\theta)$.
- (b) Suppose $f(x;\theta) = g(x)/h(\theta)$. Show that if $a(\theta)$ and $b(\theta)$ are both increasing, or both decreasing, as functions of θ , then $(X_{(1)}, X_{(n)}) = (\min(X_i), \max(X_i))$ is minimal sufficient.
- (c) Suppose $f(x;\theta) = g(x)/h(\theta)$. If $a(\theta)$ and $b(\theta)$ are both monotone, but one is increasing and the other decreasing, find a one-dimensional sufficient statistic.
- (d) If the density f is that of a uniform $U(-\theta, \theta)$ r.v. $(\theta > 0)$, find a one-dimensional sufficient statistic.
- (e) If the density f is $U(\theta, \theta + 1)$, where θ is an integer, show that any observation is sufficient and exhibit a strongly consistent estimator of θ .
- 3. In class we noted that the existence of an open rectangle of full dimension within the natural parameter space of an exponential family is a sufficient condition for completeness, and hence for minimal sufficiency of the natural sufficient statistics. However, this is too strong a condition to be useful. The following gives a more useful result that provides for the non-completeness of the natural minimal sufficient statistics in many curved exponential families.
- (a) Consider an *n*-sample from an exponential family, with natural parameters $(\pi_1, ..., \pi_k)$ and natural sufficient statistics $(T_1, ..., T_k)$, $T_j = \sum_1^n t_j(X_i)$, with no affine relationships among the T_j . Show that, if the parameter space contains k+1 points π^l , l=0,...,k which span \Re^k in the sense that they do not belong to an affine subspace of \Re^k , then $(T_1,...,T_k)$ is minimal sufficient.
- (b) Consider $X_1, ..., X_n$ i.i.d. from a Normal dsn $N(\theta, \theta^2)$. What is the minimal sufficient statistic? Is it complete?
- 4 (a) (Severini P.69, 2.2) Show that if the sequence of random variables $Y_1, Y_2, ...$ converges in quadratic mean to μ , then the sequence converges in probability. Give an example to show that the converse is not true.
- (b) (Severini P.69, 2.3) Let (X_n) and (Y_n) each be a sequence of real-valued random variables each with mean 0 and standard deviation 1. Suppose that, as $n \to \infty$, $X_n \to_d X$ and $Y_n \to_d Y$. Let ρ_n be the correlation between X_n and Y_n . Show that if $\rho_n \to 1$ as $n \to \infty$, then X and Y have the same distribution.
- 5. For distribution functions F_n (n=1,2,3...) and F, let $F_n(x) \to F(x), -\infty < x < \infty$. Suppose t_0 is s.t. $F_n^{-1}(t_0) \neq F^{-1}(t_0)$. Choose ϵ s.t. $|F_n^{-1}(t_0) F^{-1}(t_0)| > \epsilon$ for infinitely many n.
- (a) Show that $F_n^{-1}(t_0) > F^{-1}(t_0) + \epsilon$ for infinitely many n (Hint: show $F_n^{-1}(t_0) < F^{-1}(t_0) \epsilon$ i.o. is impossible.)

- (b) Deduce that $t_0 = F(F^{-1}(t_0))$ and that F is therefore flat in a right-neighborhood of $F^{-1}(t_0)$.
- (c) Show that there are at most countably many points in the set

$$\{t: \ 0 < t < 1, \ F_n^{-1}(t) \not\to F^{-1}(t), n \to \infty\}$$

Hint: a non-decreasing function has at most countably many discontinuities; why?