Stat 581 Homework 1: Due October 6, 2004

- 1. Let X and Y be independent random variables, each with a uniform U(0,1) distribution. Let V = X Y and $W = \max(X, Y)$.
- (a) What is the range (support) of the distribution of (V, W)?
- (b) Find the joint density function $f_{V,W}(v,w)$ of (V,W).
- (c) Are V and W independent?
- 2. (a) Suppose that V_n has the discrete uniform distribution

$$Pr(V_n = j/n) = 1/n, \text{ for } j = 1, 2, 3, ..., n$$

Does the sequence of random variables V_n , n = 1, 2, ... converge in distribution? Does it converge in probability?

- (b) Suppose that the sequence of real-valued random variables X_n with distribution function $F_n(\cdot)$ converges in distribution to X, where the distribution function $F(\cdot)$ of X is continuous. Show that F_n converges uniformly to F on the real line.
- 3. Suppose that for a real-valued parameter θ and for $0 \le v \le 1$, $0 \le w \le 1$,

$$f_{\theta}(v, w) = (1 + \theta(1 - 2v)(1 - 2w))$$

and $f_{\theta}(v, w) = 0$ for all other (v, w).

- (a) For what values of θ is f_{θ} a density for a pair of random variables (V, W)?
- (b) For this set of θ , find the corresponding distribution function F_{θ} , and show that V and W each has a uniform U(0,1) distribution.
- (c) For (V, W) with distribution function F_{θ} , find the correlation ρ between V and W. Does this show any difficulty with this family of distributions as a model of dependence?
- 4. Let Y_n , n=1,2,... be independent and identically distributed uniform r.vs on $0 \le y \le \theta$: $Y_n \sim U(0,\theta)$.
- (a) Let $V_n = \sqrt{n}(n^{-1}\sum_{1}^{n} Y_n \theta/2)$.

Does V_n converge in distribution? If so, to what?

(b) Let $W_n = n \min_{1 \le j \le n} Y_j$.

Does W_n converge in distribution? If so, to what?