Chapter 7: EM algrithm and NPMLE: JAW Ch.4 ctd
7.1 The EM Algorithm.
(i) See hard-copy handout notes from Stat 582, 2001.

(ii) Recall homework example (with added parameter o?):
Y; i.i.d. from mixture ;N(—6,0%) + ;N (6,0?)

(1};1/)(3/; 0,0°) = %(2702)_% exp(—y°/(20%)) exp(—0°/(20%))
)

(exp(—y0/0?) + exp(yb/o”)
(n(0,0%) = const — (n/2)log(c?) — (XZ: Y /(20%) — nb?/(207)

+ X log((exp(~Yi#/0%) + exp(¥8/0%))

(iv) What is the sufficient statistic?
How would we estimate (6,0%) ?

(v) Now suppose each Y, caries a “flag” Z;, = —1 or 1 as
obsn i comes from N(—0,0%) or N(0,0%). Let X; = (Y;, Z,).
1
fx(y,z:0,0") = (2m0’) 2 exp(~(y — 02)°/20”)
fc’n<(9, 02) — Zlog f(Y;,a Zi; 0, 02)

—  const — (n/2)log(c?) — S(Y; — 07Z;) /20*

= const —(n/2)log(c?) — (20°) Y Y? - 0 Y, Z; + 6°n)

(vi) What now is sufficient statistic, if X; were observed?
How now could you estimate (6,0%) ?
The Z, are “latent variables”; X, are “complete data”

(vii) E(4.,|Y) requires only

o((yi —0)/o) — d((yi +0)/0)

B(Z|Y:) = o((yi — 0)/a) + d((y; + 0) /o)

1



7.2 Why does EM work — see handout notes
7.3 Types of examples

(i) Multinomial examples — e.g. ABO blood types, see
handout

(ii) Mixture examples — see 7.1, also hwk.

(iii) Missing data

Caution: we do NOT “use expectations to impute the
missing data”

We compute the expected complete-data log-likelihood.
This normally involves using conditional expectations to
impute the complete-data sufficient statistics. This is
NOT the same thing — see hwk. And it could be more
complicated than this — although not if we have chosen
sensible “complete-data”.

(iv) Censored data, age-of-onset-data, competing risks
models, etc.

(v) Hidden states, latent variables:
Models in Genetics, Biology, Climate modelling,
Environmental modelling.

(vi) General auxiliary variables: the latent variables do
not have to mean anything — they are simply a tool, s.t.
that the complete-data log-likelihood is easy.



7.4 Review of Exponential families

(i) See handout notes, and/or earlier notes.
Form, examples — see 2.2

(ii) The natural sufficient statistics. — see 2.4.
The natural parameter space.

(iii) Moment formulae. see 2.2 (vii)

Bty (X)) =~
Cov(t;(X),t;(X)) = _831725;(967&7)

(iv) Likelihood equation for exponential family — see 4.6

;fj = n(n_lizftj(Xz‘) — E(t;(X)))

I(n) = J(r) = var(Th,...,T})
I(7) = (var(Ty,...,T}.))"" where 7; = E(¢;(X))

(T1, ..., Ty) achieves (multiparameter) CRLB for (r, ..., 7%).

(v) Completeness see 2.4 (vii)



7.5 EM for exponential families

(i) Suppose complete-data X has exp.fam. form: for n-
sample T;(X) = 7', t,;(X;)

log go(X) = logc(0) + 277']( )T;(X) + log h(X)

Q(60;6") = logc(f) + Zlﬂj( JEo+(T3(X)[Y) 4 Eg:(log h(X)[Y').
j:
(ii) In natural parametrization =;:

Q(m; ") = loge(m) + Z i B (T3 (X)]Y)

j_
0Q 0
S E(T;(X)|Y)+ 1
5, = ErDOIY) + 5 oge()
B (T3 (X)Y) — Ex(T5(X))
Thus EM iteratively fits unconditioned to conditioned
expectations of 7;. At MLE E_ «(T;(X)|Y) = E+(T;(X)).

(iii) Recall

U(m) = loggr(X) —log gr(X[Y)

) B h(X)exp(x; mit;(X))
but  g;(X|Y) = Jy(30)=y M(X) exp (s mit;(X))d X

= ¢ mY)(X) explE s (X))
so  {(m) = loge(m) —logc*(m;Y)

(iv) Hence, differentiating this:
o

87'(']'

At MLE: E.(T) = E.(T};Y)

= —E(T)) + E«(T3]Y)



(v) Differentiating again:
B 0
871']'877'1
If Y determines X, var(T(X)|Y) = 0, and then observed
information is var(7) as for any exp fam.

If Y tells nothing about X, var(T(X)|Y) = var(T(X)), and

observed information is O.
“Information lost” due to observing Y not X is

var(T'(X)|Y).

= Cov(T},T)) — Cov((T;, T))|Y)



