Chapter 5: Likelihood estimation and testing: JAW Ch.4
5.1 Maximum likelihood estimation: basics

(i) Suppose:

(a) AO: Xy,..., X, are i.i.d. Pp: 0 € © C R*

(b) A1l: Identifiability: 0 # 60* = Py # Py

(c) A2: P, has density f(-;0) w.r.t o-finite p.

(d) A3: A={x: f(x;0) > 0} does not depend on 6.

(ii) Given A0,A1,A2:

the likelihood L,(0) = L(9; X)) = £,(X™;0) =, f(X;;0)
The log-likelihood /,,(6) = log, L,(0) = =} log f(X;;0)

For set B C O, {,(B) = supgep £n(6)-

(iii) Given A0,A1,A2: the value 0, of § which maximises
the likelihood L,(0), if it exists and is unique, is
the maximum likelihood estimator (MLE) of §. Note

—

0,(©) = £,(0,).

(iv) Given A0-A3, and differentiability of L,(f) the MLE
may be found by solving the likelthood equation or score
equation, \y/¢,(0) = 0. (However, this equation may have
no roots in ©, or multiple roots.)

(v) Basic properties:

(a) the MLE depends only on the minimal sufficient
statistic

(b) MLE’s are NOT necessarily unbiased — if consistent,
then unbiased in the limit (E(7,) — ¢(¢)) (cf TPE
“asymptotically unbiased”)

(c) If an unbiased estimator attaining the CRLB exists,
it is the MLE.

(d) If ¢(6) is any 1-1 function of 6, ¢(d) = ¢(d).
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5.2 Kullback-Leibler Information (JAW 4.3)

(i) Defn: Let P and ) be probability measures () may be
sub-prob.meas.) with densities p and ¢q. Then K(P,Q) =

Ep(log(p(X)/q(X)))-
(ii) K(P, Q) is well-defined, and > 0 (possibly ), and =0
iff ) = P. (Proof by Jensen’s inequality, or by logz <
(z —1).)

(iii) If A0-A3, the SLLN gives, under Py, for § # 6,

L : X™) 1 Py (X)
LO;X™) ~ n T % Py(X)

—log fi a.s. K(Pay, Py) > 0
n 1
(iv) Thus P (L(6y: X™) > L(6; X™)) — 1 as n — oo. This
motivates the definition of 6, but
“Likelithood is a pointwise function on ©”
To proceed we need some metric/uniformity/smoothness

w.r.t 6.

(iv) A4: © D Oy, an open set in R*, and for 0 € O:

(a) ¢(0;z) = logpy(x) is twice continuously diffble in 6
(1 (ae.) z)

(b) 4 (a.e.) z, third order derivatives exist, with 57> 39 0
bounded by M;;,(z), and Egy (M;.(X)) < oo for all ¢ j,l =
1.k

(v) AB: () B(vE(; X)loms) — 0.

(b) E((vL(0; X)) (VL(0; X))lp=4,) < oo

(c) I(6y) = — (Eeo(ag 57, o= 90> is positive definite.



5.3 Consistency of MLE (JAW 4.7)

(i) Theorem: Suppose A0-A5. Then, with probability
— 1 as n — oo, d solution 6, of the likelihood equations
s.t. 0, —, 6y when P is true.

(ii) Fora>0let Q,={0 €O :10 —0y| =a}. We show below
that, provided @, C Oy, then for 6 € Q),, Py,(¢(6) < £(6p)) — 1
as n — 00. Hence there is a local max, which must be root
of the likelihood eqn, inside (),.

(iii) Define “observed information” J(6,) = (ae 50, o= 90>
(iv) n='(6(6; X ) — £(6; X ™))

= n7'(0 = 60)" v (€(60)) + %(9 — 6o)'(=n""J(60)) (8 — 6o)
+(6n)™ %(@' = 00) (0 = 00.0)(Ou = Bo.u) 2 j1a Xi) M (X:)
S48+ 5
where |y;,| <1 (by A4 (b)).

(V) By A5 and WLLN: 5; —p 0, —259 —p (9 — Ho)tl(eg)(e —
0y) > Aia® where )\, is smallest eigenvalue of I(6;).

Sz —p (1/6) Zj1u(05 — 60,7) (01 — 00.1) (0w — Oo,u)Eay (i1 (X1) Mjiu(X1))
and |Ss| < (1/3)(ka)®*$jiumj, = Ba® as n — .

(vi) For large enough n

IN

sup (S + Sy + S3) sup |S1 + Ss| + sup (Ss)
ISIOP 0€Qaq 0€Qaq

< (k+ B)d® — \pa?/4

< 0 for small enough a



5.4 Aymptotic normality and efficiency of 6,. (JAW 4.8)
(i) Notation

Zn =725 (U00; X)) = n7T 7 La(0h; X ™),

6(90, X) = ]_1(90)~v 5(90,2() SO TL_% Z?Zl 8(90, Xl) = ]_I(HO)ZTL.
Define G, = {60,;l.(0,) = 0,]6, — )] < €} non-empty as
n — co. (Also note I(f) = I,(0), information in single X;.)
(ii) Theorem

(@) (i, —6) — n iy iB5X) —, O

1=1

B) n Y 000 X) —a IU00)Z = D ~ Nu(0,174(8y)).

1=1

(iii) First (b): by CLT Z, —q N(0,1(6, ))
so n~2 5, 0(0; X;) = I71(00) Z, —a N(0, 171(6))
(iv) On G,

0=n"2V bu(f) = 0727 Laff) —n ' T(O;)n
Where |67, — 6o < 16, — -
Or n2(9 —60y) = (n1J(6}) 17, if J71(0) 3.
(v)6, —, 0y, so using one-term expansion of 2 nd. deriv,
and boundedness of 3 rd., n=!(J,(0}) — J.(6p)) —, 0. By
continuity, (n"1J,(07)) " =, (B(J.(6))™" = I7(6). (and
Jn(0;) is pos def with prob approaching 1).
Now [1(6y)Z, = n-2 >, 0(6y; X;) hence (a).

(vi) Transforming (ii) to ¢(0): dim(q)=k*, 1 <k* <k
@ (n*a) —alb0) — n7F X L00X) =, 0

() 1Y (0 X)) —a Nie(0, (va(00))' T2 (86) (7 q(60))).

1=1

where £,(00; X;) = (q(60))" 17" (60)(7£(60, X))
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5.5 Bits and pieces

5.5.1 Estimation of /(f): Suppose we need to estimate
I(6y), and have A0-A5, as above, so /, is twice continuously
diffble, and expectations d:

(a) 6, —, 6, so I(6,) —, I(6y), but I() can be hard to
compute.

(b) n7! ?:1(v€(9~n;Xi))(vﬁ(éniXi))t is also a consistent
estimator of 1(6)), since 74(0,; X;) —, v £(00; Xi).

(c) Often easiest is to use the second derivatives:

Lo (0 X) o
. 1 ) <31 _ _ 1
( "5 00,00 )'9:9“ (n )

is also a consistent estimator of 7(6).

(d) If CRLB attained: v(,(0) = nl(0)(8, — 0)
Hence (differentiating), J(0,) = 1(0,).

5.5.2 The one-step estimator

We want to solve /,(#; X™) = 0. This can be hard.
Suppose we have a preliminary estimator #,. Then we
can do one-step Newton-Raphson:

(n) = 1 (n) 0%y -
0=w0(0; X") ~ (0, X™) +

96,06, lg—7-(0 — 0,,)

Thus, replacing the second derivatives by some consistent

estimator —(I) from (a),(b) or (c) above, new 6 is

—

Oy = Ou + (n1(60,))" 7 Lu(60; X))
JAW 4.7: If n'/4@, — 6,) —, 0 then 0 satisfies same

~

Theorem 5.4(ii) (a) and (b) as 6, —“almost quadratic” &
best possible in cgce to true 6.
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5.6 Appendix: summary of notation

Notation, definition

description, result, etc.

X0 = (X,,....X,)
£,(6; X))

v0(0; X;) = (M)

80
Vin(0) = 27 VL(0; 'X;

)
1(0) = B~ 82%%@55 %)
)

2

= =7 log f(X;;0)

sample of i.i.d. X; from pdf f
log-likelihood function.

contribution of X; to score

the score function: deriv. of /,
I,(6) = nl(0): Fisher Information
observed information

n~1J,(0) —, 1(6)

true value of 6

the likelihood equation
maximizes /,(f) in ©

root of the likelihood eqn

Zn —a N(0,1(6)))

D, =4 D ~ Nk(O, ]_1<90))
nb s (60 X;) = T\ (60)Z,
(A, —D,) —, 0

influence fn for 6
influence fn for gq.




