Chapter 4: Estimation and Information (JAW Ch 3)

4.1 CRLB: one-dimensional real parameter (JAW 3.7-10;
TPE P. 115-)

(i) (a) X ~Pyon (X, A), 0 €O CR.

(b) Density fy = dl; % 4 where p is o-finite on X.

(c) T =T(X) estimates ¢(6); Ey|T(X)| < o0

(d) b(f) = Ep(T)—q(#) = biasof T

(e) ¢'(0) 3

(ii) Suppose: (a) © is an open subset of R

(b) 3B, w(B) =0 s.t. for z ¢ B %82 3y

(c) A={z: fy(x) =0} does not depend on 6

(d) 1(6) = Eo((¢4(X))?) > 0 where £y(z) = Zlog fy(z) is the
Score function for 6.

I(0) is the Fisher Information for 6.

(e) 1 fo(x)du(x) and JT(x)fp(z)du(z) can both be
differentiated w.r.t. § under the integral sign.

(iii) Then, if (ii), vary(T(X)) > (q( )+ (0)*/1(0) V6 €O
and equality holds V6 iff 3k(0) s.

t(X) = kO)(T(X) —q(0) —b(0)) a.e. ().

(iv) Proof: Ey(£y(X)) =0 so I(0) = Ea((£5(X))?) = var(£y(X))
(¢'(8) + b'(9)) Cov(T(X),4y(X)) and result follows from
Cauchy-Schwarz, with equality iff /,(X) = k(0)(T(X)+c(0));
taking expectations gives ¢(0) = —Ey(T) = —q(0) — b(0).

(v) If also | fy(x)du(z) can be differentiated twice under the
integral

16) = —E(log (X)) = — E(6(X)

Prf: Differentiating again, gives Ey(¢)(X)) + E((£)(X))?) =0
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4.2 Assumption verification, and notes

(i) Assumption (ii)(e) can be the hard one to check.

It holds for exponential families: see 2.7 and TPE P.27.
More generally: using ’ to denote 2, if X'(w,6) 3V0 a.e.(u)
and |X'(w,0)| < Y(w) V6, and Y integrable, then DCT will
give that (jo X (w,0)du) = o X'(w, 0)dpu.

(ii) If b(8) = 0 and vary(T) = (¢'(9))2/1(8), T is MVUE of ¢(6),
and /(X)) = k(0)(T(X) — q(#)). And conversely, if /,(X) = ...
etc.

(iii) T is MVUE of ¢(0) iff aT + b is MVUE of aq(6) + b
but if 7 non-linear, A unbiased estimator achieving CRLB
for m(q(0)).

(iv) T is MVUE of ¢(#) = T is MLE of ¢(6).

(v) T a MVUE of ¢(6) = var(T) = |¢'(0)/k(0)| since var(T) =
q'(0)*/E(6y(X))* = ¢'(0)*/ (k(0)* (vary(T))

(vi) Example: TPE P. 118. JAW 3.8-9

X; 1.i.d. Poisson mean 6 > 0.

(a) Conditions (a)-(d) are trivial. For (e) E(T(X™)) =
_____ 2, t(x™) e7™9%% / (112,!), which is absolutely cgt power
series in § if E(|T(X™|) < oo, so can diffte term-by-term.
(b) 4y(X™) = n(X, —60)/0. X, attains lower bound for
q(f) =60, and var(X,) =6/n = CRLB.

(c) For, q(§) = 6>, CRLB = 46°/n

B(X,’) =62+6/n, so T* = X, — X, /n is unbiased for 62 and
is min variance (by Lehmann-Scheffé & Rao-Blackwell).

var(T*) = 40°/n+260*/n* > CRLB, but -+ CRLB as n — co.
(See TPE P.30 for Poisson moments).



4.3 Examples

(i) Information in an n-sample
If X and Y are independent;

BXY) = 0s((X,Y)) = (log o(X) +log oY)
= 4(X) + 1Y)

These two terms are independent, each mean 0, so
E(6p(X,Y)?) = E(6y(X)*)+ E(f(Y)?) or Ixy(0) = Ix(0)+ Iy(9)
For X" = (X1,..., X,), X; i.i.d.; I,(0) = nI,(6).

(ii) Location parameter: JAW 3.9, TPE P.119

fo(z) = g(z — 0) for known g, f5(z) = —(¢'/9)(z —0)
1(0) = E((64(X))*) = I%dy =1,

For n-sample: I,(0) = nl,, Bo(T(X™) = 0 = vary(T},) > 1/nl,;
Varg(n%(Tn —0)) > 1/1,.

(iii) Scale parameter: JAW3.9, TPE P.119

folx) = 0~"g(x/6), ly(x) = 67 (=1 —(z/0)(q'/9)(x/0))

1(0) =072 1(=1 = y(g'/9)(y))*dy = 07°I;.

For n-sample: I,(0) = nl,, Fp(T(X™)) = 0 = vary(T},) >
0°/nl; Varg(n%(Tn —0)/0) > 1/1;.

(iv) Reparametrization: ¢ = ¢ (6) a 1-1 transformation.
Then £,(X) = gi(log fo(X)) = (¥'((6))"6(X)

I(¢) = (¢ ((9)))_21(9)-

But also éhb( @)+b(8)) = (¢'(0)+b'(9))/y'(6), so the CRLB
is unchanged — as should be so!!



4.4 Other lower bounds

(i) Back to Cauchy-Schwarz:

Suppose Ey(T?) < oo and ¥(X;0) any function with 0 <
Eo(¥(X,0)%) < oo, then varg(T) > (Covy(T,1))?/vary(¥). In
general, this is not useful since the r.h.s. involves T.

(ii) Blyth’s Theorem

(a) Covy(T,¥) depends on T only through Ey(T) iff

(b) Covg(V,¥) =0V V s.t. Eg(V) =0 V0 and Ey(V?) < oo.
Proof: Suppose (b), and let Ey(T7) = Ey(73). Consider V =
Ty — Ts. So Cov(Ty,¥) = Cov(Ts, V), Hence (a).

Suppose (a), and take V as in (b). So E(T+ V) =E(T). So
Cov(T +V, V) = Cov(T,¥). Hence (b).

(iii) Cor 1: ¥(X,60) = (;(X), satisfies (b), hence (a), and
Cov(T, V) = (Ey(T))’, giving the CRLB.

(iv) Cor 2: Hammersley-Chapman-Robbins Inequality
Assume fy(z) >0 Ve € X. Let ¥(x,0) = (foon(x)/fo(x) —1).
So Ey(¥(X,60)) =0VA and for V s.t. (b) Cov(V, V) =Ey(VV) =
E9+A<V) - EQ(V) =0 and COV(T, \If) = E9+A(T) - EQ(T), so VA

fora(X) ’
foX) 1)

(v) Cor 3: with appropriate differentiability, regularity
etc., let A — 0 in Cor 2, and we get back to CRLB

(Eo(T)))*/1(6).

an(T) > (Baea(T) ~ EalT))"/Eo



4.5 Multiparameter CRLB: © C R*.

(i) Theorem (Vector version of Cauchy-Schwarz/Blyth)
For any unbiased estimator 7 of ¢(f), and any functions
‘IJZ(X, 9) with Eg(\IJ?(X, 9)) < 00, let Cij = COVQ(‘IJZ',\IJ]'>, and
v; = Cov(T,¥;). Then (a) var(T) > ~'C~ 4.
(b) The lower bound depends on 7 only through ¢(6)
provided Cov(V,¥) =0 VV s.t. Eg(V) =0 V0 and Ey¢(V?) < oo.
(ii) First, let W = (W7, ..., Wy) and T be r.vs with finite 2nd
moments. Let p(a) = p(a'W,T) < 1. We show in (iv),(v)
that sup,(p*(a)) = ~'C'v/var(T), where C = var(W) and
v = Cov(W, T).
(iii) sup,(p®(a)) < 1, so putting W = ¥ gives theorem part
(a). Then (b) follows exactly as in Blyth’s theorem.
(iv) Suppose C = var(IW) is positive definite, so C = AA’,
with A non-singular. Then
2(&) _ (COV(CLtW, T))2 _ (a’t’}/)2

P - var(alW)var(T)  (a*Ca)var(T)
and (a'y)? = (a'AA™1Y)? < (a'AA%a).(y' (A1) A1)
= (a'Ca)(y'C1v) gives result.
(v) Note the sup is attained iff A’la oc A~1v; that is a oc C 1.

(vi) Under multidimensional analogues of 4.1 (ii) (a)-
(e), var(T) > o'(I(9)) 'a where a = VE(T(X)), and I(f) =
Eg(Vlo(X) ¥ lo(X)").

(vii) Proof: set ¥ = /{p(X), and show Eyp(¥) = 0, v =
Cov(T,7ly(X)) = VEo(T(X)) = a and C = I(6).

(viii) In case of equality: “a'W” oc WE¢(T(X))I(0) ' 74a(X):
this function is known as the efficient influence function
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4.6 Nuisance parameters and submodels
(i) If Ey(T) = '8, a = ¢, var(T) > (1(6)) e
If Eg(T) = 61, var(T) > ((I(0)) V)11 = (l11— Lol 1)~ > (1) 71,
and = (I;;)"!iff ;3 =0.
(ii) Exponential families /-(X) = log(c(n)) + =i, 7,T;(X) +
log h(X).
V(lr) = (T'=Eq(T)
I(m) = E((V
Now £ = Cov(T,v pi)) = Cov(T,T — 1) = var(T),
so var(T) = I(m) = ar(T)](T)var(T),
or I(r) = (var(T))™
(iii) Location-scale families: fj,(z) = o 'g((x 9)/0).
Then Iy = 0 °Iy, I =0 *I and Iy = 0~ * [ (()) dy.
Note I15 =0 if g() is symmetrlc about 0.

(iv) JAW notes etc. on the geometry of this stuff — his
class of Nov 7.



4.7 Asymptotic relative efficiency (ARE)

(i) Let 77, and T,, be two sequencies of estimators, each
consistent for ¢(f) and 7;, being based on an n-sample
XM, Let ny(n;) be defined s.t. var(T,,) = var(Ti,,). Then
the A.R.E. of (Tl,n) to (Tg’n) is limnl_m n2<n1)/n1.

(ii) Asymptotically Gaussian regular estimators:

If T, is a consistent estimator of ¢(f) based on i.i.d
n-sample X, then (7},) is an asymptotically Gaussian
regular estimator if n%(T —q(0)) —a N(0,7(9)).

(iii) For two Asymptotlcally Gaussian Regular estimators:

var(m Tin,) — 71, var(n T2 ny) = (y/n1/n2)*var(n T2 n). For equal
variance, for large n{, (ni/ny)ms = 7¢ or lim(ny/ny) = 75 /7¢.

(iv) Example: Suppose Xi,..., X, are i.i.d from F(z — 6)
with F(0) = 1/2 and E(X;) = . Then X, and M = med(X)
are both consistent estimators of 6.

Suppose F has density f, f(0) > 0, and var(X;) = 0 < co.
Then n2(X,—6) —, N(0,02) and n2(M—6) =4 N(0,1/4(£(0))?).
So the ARE of X, to M is 1/(40%f(0)?)

(v) Exercises: ARE(X,, : M)

X; ~ N(,0%): ARE= 7/2. X; ~ DE®,\): ARE =1.
X; ~ U@ —1,0+1): ARE= 3. Note the scale parameter
affects X,, and M equally.

(vi) Asymptotic efficiency of asymptotically Gaussian
regular estimators: (when CRLB conditions apply)

If (T},) is consistent for ¢(f) and n2(T —q(0)) —4 N(0,7%(0)),
then 72(6) > (¢'(0))?/1(6). We define the (absolute)
asymptotic efficiency of (T,) to be (¢'(0)?/(I,(6)7?))

= lim(q'(0)%/(1,(0)var(T},)) = lim(q’(9)2/(11(9)var(n%Tn)) <1

7



