Chapter 4: Estimation and Information (JAW Ch 3)
4.1 CRLB: one-dimensional real parameter (JAW 3.7-10;
TPE P. 115-)

- (i) (a) $X \sim P_{\theta}$ on $(\mathcal{X}, \mathcal{A}), \ \theta \in \Theta \subset \Re$.
- (b) Density $f_{\theta} \equiv \frac{dP_{\theta}}{d\mu} \; \exists \; \text{where} \; \mu \; \text{is} \; \sigma\text{-finite on} \; \mathcal{X}.$
- (c) $T \equiv T(X)$ estimates $q(\theta)$; $E_{\theta}|T(X)| < \infty$
- (d) $b(\theta) \equiv E_{\theta}(T) q(\theta) \equiv \text{bias of } T$
- (e) $q'(\theta) \exists$
- (ii) Suppose: (a) Θ is an open subset of \Re
- **(b)** $\exists B, \ \mu(B) = 0 \text{ s.t. for } x \notin B \ \frac{\partial f_{\theta}(x)}{\partial \theta} \ \exists \ \forall \theta$
- (c) $A \equiv \{x : f_{\theta}(x) = 0\}$ does not depend on θ
- (d) $I(\theta) \equiv \mathbb{E}_{\theta}((\ell'_{\theta}(X))^2) > 0$ where $\ell'_{\theta}(x) \equiv \frac{\partial}{\partial \theta} \log f_{\theta}(x)$ is the **Score function** for θ .
- $I(\theta)$ is the *Fisher Information* for θ .
- (e) $\int f_{\theta}(x)d\mu(x)$ and $\int T(x)f_{\theta}(x)d\mu(x)$ can both be differentiated w.r.t. θ under the integral sign.
- (iii) Then, if (ii), $var_{\theta}(T(X)) \geq (q'(\theta) + b'(\theta))^2/I(\theta) \quad \forall \theta \in \Theta$ and equality holds $\forall \theta$ iff $\exists k(\theta)$ s.t.

$$\ell'_{\theta}(X) = k(\theta)(T(X) - q(\theta) - b(\theta))$$
 a.e. (μ) .

- (iv) Proof: $E_{\theta}(\ell'_{\theta}(X)) = 0$ so $I(\theta) = E_{\theta}((\ell'_{\theta}(X))^2) = var(\ell'_{\theta}(X))$ $(q'(\theta) + b'(\theta)) = Cov(T(X), \ell'_{\theta}(X))$ and result follows from Cauchy-Schwarz, with equality iff $\ell'_{\theta}(X) = k(\theta)(T(X) + c(\theta))$; taking expectations gives $c(\theta) = -E_{\theta}(T) = -q(\theta) b(\theta)$.
- (v) If also $\int f_{\theta}(x)d\mu(x)$ can be differentiated twice under the integral

$$I(\theta) = -\operatorname{E}(\frac{\partial^2}{\partial \theta^2} \log f_{\theta}(X)) = -\operatorname{E}(\ell''_{\theta}(X))$$

Prf: Differentiating again, gives $E_{\theta}(\ell''_{\theta}(X)) + E((\ell'_{\theta}(X))^2) = 0$

- 4.2 Assumption verification, and notes
- (i) Assumption (ii)(e) can be the hard one to check. It holds for exponential families: see 2.? and TPE P.27. More generally: using ' to denote $\frac{\partial}{\partial \theta}$, if $X'(\omega, \theta) \exists \forall \theta$ a.e.(μ) and $|X'(\omega, \theta)| \leq Y(\omega) \ \forall \theta$, and Y integrable, then DCT will give that $(\int_{\Omega} X(\omega, \theta) d\mu)' = \int_{\Omega} X'(\omega, \theta) d\mu$.
- (ii) If $b(\theta) = 0$ and $var_{\theta}(T) = (q'(\theta))^2/I(\theta)$, T is MVUE of $q(\theta)$, and $\ell'_{\theta}(X) = k(\theta)(T(X) q(\theta))$. And conversely, if $\ell'_{\theta}(X) = \dots$ etc.
- (iii) T is MVUE of $q(\theta)$ iff aT + b is MVUE of $aq(\theta) + b$ but if π non-linear, $\not\equiv$ unbiased estimator achieving CRLB for $\pi(q(\theta))$.
- (iv) T is MVUE of $q(\theta) \Rightarrow T$ is MLE of $q(\theta)$.
- (v) T a MVUE of $q(\theta) \Rightarrow \text{var}(T) = |q'(\theta)/k(\theta)|$ since $\text{var}(T) = q'(\theta)^2/\mathbb{E}(\ell'_{\theta}(X))^2 = q'(\theta)^2/(k(\theta)^2(\text{var}_{\theta}(T)))$
- (vi) Example: TPE P. 118. JAW 3.8-9 X_i i.i.d. Poisson mean $\theta > 0$.
- (a) Conditions (a)-(d) are trivial. For (e) $E(T(X^{(n)})) = \sum_{x_1,...,x_n} t(x^{(n)}) e^{-n\theta} \theta^{\sum x_i} / (\prod x_i!)$, which is absolutely cgt power series in θ if $E(|T(X^{(n)}|) < \infty$, so can diffte term-by-term.
- (b) $\ell_{\theta}(X^{(n)}) = n(\overline{X_n} \theta)/\theta$. $\overline{X_n}$ attains lower bound for $q(\theta) = \theta$, and $var(\overline{X_n}) = \theta/n = CRLB$.
- (c) For, $q(\theta) = \theta^2$, CRLB = $4\theta^3/n$ $\mathrm{E}(\overline{X_n}^2) = \theta^2 + \theta/n$, so $T^* = \overline{X_n}^2 - \overline{X_n}/n$ is unbiased for θ^2 and is min variance (by Lehmann-Scheffé & Rao-Blackwell). $\mathrm{var}(T^*) = 4\theta^3/n + 2\theta^2/n^2 > \mathrm{CRLB}$, but $\to \mathrm{CRLB}$ as $n \to \infty$. (See TPE P.30 for Poisson moments).

4.3 Examples

(i) Information in an n-sample

If X and Y are independent;

$$\ell'_{\theta}(X,Y) \equiv \frac{\partial}{\partial \theta} (\log(f_{\theta}(X,Y))) = \frac{\partial}{\partial \theta} (\log f_{\theta}(X) + \log f_{\theta}(Y))$$
$$= \ell'_{\theta}(X) + \ell'_{\theta}(Y)$$

These two terms are independent, each mean 0, so $\mathrm{E}(\ell'_{\theta}(X,Y)^2) = \mathrm{E}(\ell'_{\theta}(X)^2) + \mathrm{E}(\ell'_{\theta}(Y)^2)$ or $I_{X,Y}(\theta) = I_X(\theta) + I_Y(\theta)$ For $X^{(n)} = (X_1, ..., X_n)$, X_i i.i.d.; $I_n(\theta) = nI_1(\theta)$.

(ii) Location parameter: JAW 3.9, TPE P.119

$$f_{\theta}(x) = g(x - \theta)$$
 for known g , $\ell'_{\theta}(x) = -(g'/g)(x - \theta)$
 $I(\theta) = \mathrm{E}((\ell'_{\theta}(X))^2) = \int \frac{g'(y)^2}{g(y)} dy \equiv I_g$

For n-sample: $I_n(\theta) = nI_g$, $E_{\theta}(T(X^{(n)}) = \theta \Rightarrow var_{\theta}(T_n) \ge 1/nI_g$; $var_{\theta}(n^{\frac{1}{2}}(T_n - \theta)) \ge 1/I_g$.

(iii) Scale parameter: JAW3.9, TPE P.119

$$f_{\theta}(x) = \theta^{-1}g(x/\theta), \ \ell'_{\theta}(x) = \theta^{-1}(-1 - (x/\theta)(g'/g)(x/\theta))$$
 $I(\theta) = \theta^{-2} \int (-1 - y(g'/g)(y))^2 dy \equiv \theta^{-2} I_a^*.$

For n-sample: $I_n(\theta) = nI_g$, $\mathbb{E}_{\theta}(T(X^{(n)})) = \theta \Rightarrow \operatorname{var}_{\theta}(T_n) \geq \theta^2/nI_g^*$; $\operatorname{var}_{\theta}(n^{\frac{1}{2}}(T_n - \theta)/\theta) \geq 1/I_g^*$.

(iv) Reparametrization: $\psi = \psi(\theta)$ a 1-1 transformation.

Then
$$\ell'_{\psi}(X) = \frac{\partial}{\partial \psi}(\log f_{\theta}(X)) = (\psi'((\theta)))^{-1}\ell'_{\theta}(X)$$

 $I(\psi) = (\psi'((\theta)))^{-2}I(\theta)$.

But also $\frac{\partial}{\partial \psi}(q(\theta) + b(\theta)) = (q'(\theta) + b'(\theta))/\psi'(\theta)$, so the CRLB is unchanged – as should be so!!

4.4 Other lower bounds

(i) Back to Cauchy-Schwarz:

Suppose $E_{\theta}(T^2) < \infty$ and $\Psi(X;\theta)$ any function with $0 < E_{\theta}(\Psi(X,\theta)^2) < \infty$, then $\mathrm{var}_{\theta}(T) \geq (\mathrm{Cov}_{\theta}(T,\psi))^2/\mathrm{var}_{\theta}(\Psi)$. In general, this is not useful since the r.h.s. involves T.

- (ii) Blyth's Theorem
- (a) $Cov_{\theta}(T, \Psi)$ depends on T only through $E_{\theta}(T)$ iff
- (b) $Cov_{\theta}(V, \Psi) = 0 \ \forall \ V \ \text{s.t.} \ E_{\theta}(V) = 0 \ \forall \theta \ \text{and} \ E_{\theta}(V^2) < \infty$.

Proof: Suppose (b), and let $E_{\theta}(T_1) = E_{\theta}(T_2)$. Consider $V = T_1 - T_2$. So $Cov(T_1, \Psi) = Cov(T_2, \Psi)$, Hence (a).

Suppose (a), and take V as in (b). So E(T+V)=E(T). So $Cov(T+V,\Psi)=Cov(T,\Psi)$. Hence (b).

- (iii) Cor 1: $\Psi(X,\theta) = \ell'_{\theta}(X)$, satisfies (b), hence (a), and $Cov(T,\Psi) = (E_{\theta}(T))'$, giving the CRLB.
- (iv) Cor 2: Hammersley-Chapman-Robbins Inequality

Assume $f_{\theta}(x) > 0 \ \forall x \in \mathcal{X}$. Let $\Psi(x, \theta) = (f_{\theta + \Delta}(x)/f_{\theta}(x) - 1)$.

So $E_{\theta}(\Psi(X,\theta)) = 0 \ \forall \Delta \ \text{and for} \ V \ \text{s.t.}$ (b) $Cov(V,\Psi) = E_{\theta}(\Psi V) = E_{\theta+\Delta}(V) - E_{\theta}(V) = 0 \ \text{and} \ Cov(T,\Psi) = E_{\theta+\Delta}(T) - E_{\theta}(T), \ \text{so} \ \forall \Delta$

$$\operatorname{var}_{\theta}(T) \geq (\operatorname{E}_{\theta+\Delta}(T) - \operatorname{E}_{\theta}(T))^{2} / \operatorname{E}_{\theta} \left(\frac{f_{\theta+\Delta}(X)}{f_{\theta}(X)} - 1 \right)^{2}$$

(v) Cor 3: with appropriate differentiability, regularity etc., let $\Delta \to 0$ in Cor 2, and we get back to CRLB $((E_{\theta}(T))')^2/I(\theta)$.

- 4.5 Multiparameter CRLB: $\Theta \subset \Re^k$.
- (i) Theorem (Vector version of Cauchy-Schwarz/Blyth) For any unbiased estimator T of $q(\theta)$, and any functions $\Psi_i(X,\theta)$ with $\mathbb{E}_{\theta}(\Psi_i^2(X,\theta)) < \infty$, let $C_{ij} = \text{Cov}_{\theta}(\Psi_i,\Psi_j)$, and $\gamma_i = \text{Cov}(T,\Psi_i)$. Then (a) $\text{var}(T) \geq \gamma^t C^{-1} \gamma$.
- (b) The lower bound depends on T only through $q(\theta)$ provided $Cov(V, \Psi) = 0 \ \forall V \ \text{s.t.} \ E_{\theta}(V) = 0 \ \forall \theta \ \text{and} \ E_{\theta}(V^2) < \infty$.
- (ii) First, let $W = (W_1, ..., W_k)$ and T be r.vs with finite 2nd moments. Let $\rho(a) \equiv \rho(a^t W, T) \leq 1$. We show in (iv),(v) that $\sup_a(\rho^2(a)) = \gamma^t C^{-1} \gamma / \text{var}(T)$, where C = var(W) and $\gamma = \text{Cov}(W, T)$.
- (iii) $\sup_a(\rho^2(a)) \leq 1$, so putting $W = \Psi$ gives theorem part
- (a). Then (b) follows exactly as in Blyth's theorem.
- (iv) Suppose C = var(W) is positive definite, so $C = AA^t$, with A non-singular. Then

$$\rho^{2}(a) = \frac{(\operatorname{Cov}(a^{t}W, T))^{2}}{\operatorname{var}(a^{t}W)\operatorname{var}(T)} = \frac{(a^{t}\gamma)^{2}}{(a^{t}Ca)\operatorname{var}(T)}$$

and $(a^t \gamma)^2 = (a^t A A^{-1} \gamma)^2 \le (a^t A A^t a) \cdot (\gamma^t (A^{-1})^t A^{-1} \gamma)$ = $(a^t C a) (\gamma^t C^{-1} \gamma)$ gives result.

- (v) Note the sup is attained iff $A^t a \propto A^{-1} \gamma$; that is $a \propto C^{-1} \gamma$.
- (vi) Under multidimensional analogues of 4.1 (ii) (a)-
- (e), $\operatorname{var}(T) \geq \alpha^t(I(\theta))^{-1}\alpha$ where $\alpha = \nabla \operatorname{E}_{\theta}(T(X))$, and $I(\theta) = \operatorname{E}_{\theta}(\nabla \ell_{\theta}(X) \nabla \ell_{\theta}(X)^t)$.
- (vii) Proof: set $\Psi = \nabla \ell_{\theta}(X)$, and show $E_{\theta}(\Psi) = 0$, $\gamma = Cov(T, \nabla \ell_{\theta}(X)) = \nabla E_{\theta}(T(X)) = \alpha$ and $C = I(\theta)$.
- (viii) In case of equality: " a^tW " $\propto \nabla \mathbb{E}_{\theta}(T(X))I(\theta)^{-1}\nabla \ell_{\theta}(X)$: this function is known as the *efficient influence function*

4.6 Nuisance parameters and submodels

- (i) If $E_{\theta}(T) = c^{t}\theta$, $\alpha = c$, $var(T) \geq c^{t}(I(\theta))^{-1}c$ If $E_{\theta}(T) = \theta_{1}$, $var(T) \geq ((I(\theta))^{-1})_{11} = (I_{11} - I_{12}I_{22}^{-1}I_{21})^{-1} \geq (I_{11})^{-1}$, and $= (I_{11})^{-1}$ iff $I_{12} = 0$.
- (ii) Exponential families $\ell_{\pi}(X) = \log(c(\pi)) + \sum_{j=1}^{k} \pi_{j} T_{j}(X) + \log h(X)$.

$$\nabla(\ell_{\pi}) = (T - \mathcal{E}_{\pi}(T)) = (T - \tau(\pi))$$

$$I(\pi) = \mathcal{E}((\nabla(\ell_{\pi}))(\nabla(\ell_{\pi}))^{t}) = \operatorname{var}(T)$$

$$\mathbf{Now} \frac{\partial \tau}{\partial \pi} = \operatorname{Cov}(T, \nabla(\ell_{p}i)) = \operatorname{Cov}(T, T - \tau) = \operatorname{var}(T),$$

$$\mathbf{so} \operatorname{var}(T) = I(\pi) = \operatorname{var}(T)I(\tau)\operatorname{var}(T),$$

$$\mathbf{or} \ I(\tau) = (\operatorname{var}(T))^{-1}.$$

- (iii) Location-scale families: $f_{\theta,\sigma}(x) = \sigma^{-1}g((x-\theta)/\sigma)$. Then $I_{11} = \sigma^{-2}I_g$, $I_{22} = \sigma^{-2}I_g^*$ and $I_{12} = \sigma^{-2} \int y \frac{g'(y)^2}{g(y)} dy$. Note $I_{12} = 0$ if g() is symmetric about 0.
- (iv) JAW notes etc. on the geometry of this stuff his class of Nov 7.

- 4.7 Asymptotic relative efficiency (ARE)
- (i) Let $T_{1,n}$ and $T_{2,n}$ be two sequencies of estimators, each consistent for $q(\theta)$ and $T_{i,n}$ being based on an n-sample $X^{(n)}$. Let $n_2(n_1)$ be defined s.t. $var(T_{2,n_2}) = var(T_{1,n_1})$. Then the A.R.E. of $(T_{1,n})$ to $(T_{2,n})$ is $\lim_{n_1\to\infty} n_2(n_1)/n_1$.
- (ii) Asymptotically Gaussian regular estimators:

If T_n is a consistent estimator of $q(\theta)$ based on i.i.d *n*-sample $X^{(n)}$, then (T_n) is an asymptotically Gaussian regular estimator if $n^{\frac{1}{2}}(T_n - q(\theta)) \rightarrow_d N(0, \tau^2(\theta))$.

- (iii) For two Asymptotically Gaussian Regular estimators: $\operatorname{var}(n_1^{\frac{1}{2}}T_{1,n_1}) \to \tau_1^2$, $\operatorname{var}(n_1^{\frac{1}{2}}T_{2,n_2}) = (\sqrt{n_1/n_2})^2 \operatorname{var}(n_2^{\frac{1}{2}}T_{2,n})$. For equal variance, for large n_1 , $(n_1/n_2)\tau_2^2 = \tau_1^2$ or $\lim(n_2/n_1) = \tau_2^2/\tau_1^2$.
- (iv) Example: Suppose $X_1,...,X_n$ are i.i.d from $F(x-\theta)$ with F(0) = 1/2 and $E(X_i) = \theta$. Then $\overline{X_n}$ and $M = \text{med}(X_i)$ are both consistent estimators of θ .

Suppose F has density f, f(0) > 0, and $var(X_i) = \sigma^2 < \infty$. Then $n^{\frac{1}{2}}(\overline{X_n}-\theta) \to_d N(0,\sigma^2)$ and $n^{\frac{1}{2}}(M-\theta) \to_d N(0,1/4(f(0))^2)$. So the ARE of $\overline{X_n}$ to M is $1/(4\sigma^2 f(0)^2)$

(v) Exercises: $ARE(\overline{X_n}:M)$ $X_i \sim N(\theta, \sigma^2)$: ARE = $\pi/2$. $X_i \sim DE(\theta, \lambda)$: ARE =1. $X_i \sim U(\theta - \psi, \theta + \psi)$: ARE= 3. Note the scale parameter

affects $\overline{X_n}$ and M equally.

(vi) Asymptotic efficiency of asymptotically Gaussian regular estimators: (when CRLB conditions apply) If (T_n) is consistent for $q(\theta)$ and $n^{\frac{1}{2}}(T_n-q(\theta)) \rightarrow_d N(0,\tau^2(\theta))$, $(q'(\theta))^2/I_1(\theta)$. We define the (absolute) asymptotic efficiency of (T_n) to be $(q'(\theta)^2/(I_1(\theta)\tau^2))$

 $= \lim (q'(\theta)^2/(I_n(\theta)\text{var}(T_n)) = \lim (q'(\theta)^2/(I_1(\theta)\text{var}(n^{\frac{1}{2}}T_n)) \le 1$