Stat 581 Homework 3: Due October 22, 2003

- 5. Let F be a cdf, and for 0 < t < 1 define $F^{-1}(t) = \inf\{x : F(x) \ge t\}$. Show that
- (a) F^{-1} is left-continuous
- (b) $F^{-1}(F(x)) \le x, -\infty < x < \infty$
- (c) $F(F^{-1}(t)) \ge t$, 0 < t < 1
- (d) $F(x) \ge t$ if and only if $x \ge F^{-1}(t)$.
- 6. For distribution functions F_n (n=1,2,3...) and F, let $F_n(x) \to F(x), -\infty < x < \infty$. Suppose t_0 is s.t. $F_n^{-1}(t_0) \not\to F^{-1}(t_0)$. Choose ϵ s.t. $|F_n^{-1}(t_0) F^{-1}(t_0)| > \epsilon$ for infinitely many n.
- (a) Show that $F_n^{-1}(t_0) > F^{-1}(t_0) + \epsilon$ for infinitely many n (Hint: show $F_n^{-1}(t_0) < F^{-1}(t_0) \epsilon$ i.o. is impossible.)
- (b) Deduce that $t_0 = F(F^{-1}(t_0))$ and that F is therefore flat in a right-neighborhood of $F^{-1}(t_0)$.
- (c) Show that there are at most countably many points in the set

$$\{t: \ 0 < t < 1, \ F_n^{-1}(t) \not\to F^{-1}(t), n \to \infty\}$$

Hint: a non-decreasing function has at most countably many discontinuities; why?