Stat 581 Homework 8: Due December 3, 2003

1. Suppose that $X_1, ..., X_n$ are i.i.d from a distribution with

$$E(X_i) = \theta$$
, $var(X_i) = 1$, $m_4 = E(X_i^4) < \infty$, and $\mu_4 = E(X_i - \theta)^4$

Let $(T_{1,n}) = n^{-1} \sum_{i=1}^{n} X_i^2 - 1$, $T_{2,n} = (n^{-1} \sum_{i=1}^{n} X_i)^2 - n^{-1}$.

- (a) Show that both sequences of estimators are unbiased for θ^2 , and determine the variances of their standardized asymptotic distributions.
- (b) Show that if the distribution is symmetric, $\mu_4 = m_4 6\theta^2 \theta^4$. Hence show that, in this case, the A.R.E. of $(T_{2,n})$ relative to $(T_{1,n})$ is ≥ 1 .
- (c) Give an example of a distribution for which the A.R.E. is ≤ 1 .
- 2. Let $X(u) \sim N(\alpha + \beta u, \sigma^2)$, where $0 \le u \le 1$, σ^2 is known, and α and β are unknown. A design for this problem consists of choosing numbers $u_1, ..., u_n$ at which to observe $X(u_1), ..., X(u_n)$. The analysis of the data is based on the MLE/least-quares estimator $\tilde{\beta} = \sum_i (u_i \overline{u}) X_i(u) / \sum_i (u_i \overline{u})^2$.
- (a) Determine the information matrix for (α, β) based on the sample.
- (b) Assume, for simplicity than n is even. Show that a design that puts n/2 points at u = 0 and n/2 at u = 1 maximized the determinant of the information matrix and minimizes the variance of $\tilde{\beta}$.
- (c) A competing design has $u_i = (i-1)/(n-1)$. Find the relative efficiency of the estimator $\tilde{\beta}$ from this design, as compared to the design in (b).

(Reminder: $\sum_{1}^{n} i^{2} = n(n+1)(2n+1)$.)

- (d) Which design would you orefer to use, and why?
- 3. Suppose that $X_1, ..., X_n$ are i.i.d. Poisson with mean λ , $Y_1, ..., Y_n$ are i.i.d Poisson with mean μ , and $Z_1, ..., Z_n$ are i.i.d. Poisson with mean ν , and that the three samples are independent.
- (a) Derive the likelihood ratio test of the hypothessis $\lambda = \mu = \nu$.
- (b) Assuming it is known that $\lambda = \mu$, derive the likelihood ratio test of the hypothesis $\lambda = \mu = \nu$.
- (c) Assuming it is known that $\lambda = \mu$, derive the Rao (Score) test of the hypothesis $\lambda = \mu = \nu$.
- 4. Continuing 3, and assuming that $\lambda = \mu$, derive the Wald tests of the hypothesis $\lambda = \mu = \nu$, using the parametrizations:

(a)
$$\beta = (\lambda - \nu, \mu)$$
 (b) $\beta = (\nu/\lambda, \mu)$ (c) $\beta = (\lambda/\nu, \mu)$ (d) $\beta = (\log(nu/\lambda), \lambda)$

- 5. Consider a 2×2 table, so that $(X_{11}, X_{12}, X_{21}, X_{22})$ is multinomial with index equal to the sample size n, and probabilities $(p_{11}, p_{12}, p_{21}, p_{22})$ with $p_{11} + p_{12} + p_{21} + p_{22} = 1$. This may be conveniently parametrized as $\theta = (p_1, p_{11}, \psi)$ where $p_1 = p_{11} + p_{12}$, $p_{11} = p_{11} + p_{21}$ and $\psi = \log(p_{21}p_{12}/p_{11}p_{22})$. You may use the fact that $\psi = 0$ if and only if independence holds in the 2×2 table: that is $p_{ij} = p_{i\cdot}p_{\cdot j}$ for i, j = 1, 2.
- (a) Find the MLE $\widehat{\psi}_n$ of ψ .
- (b) Show that $\widehat{\psi}_n$ is asymptotically Normal, and the variance of the asymptotic Normal distribution is $\sum \sum_{i,j=1,2} (p_{ij})^{-1}$.
- (c) Show that the usual test statistic for testing independence in a 2×2 table

$$Q_n = \sum_{i=1,2} \sum_{j=1,2} (X_{ij} - E_{ij})^2 / E_{ij}$$

where $E_{ij} = X_i X_{\cdot j}/n$, has an asymptotically χ_1^2 distribution under $\psi = 0$.

- (d) Find the limiting value of $n^{-1}Q_n$ under a general value of (p_{ij}) .
- (e) **Assume** the usual theory holds under local alternatives, $\psi_n = sn^{-\frac{1}{2}}$, so that then Q_n is asymptotically $\chi_1^2(\delta)$, where $\delta = p_{,\cdot}(1-p_{1\cdot})p_{\cdot 1}(1-p_{\cdot 1})s^2$. (**Do not show this.**) Suppose that n=30 and a test of size $\alpha=0.02$ is used. Show how you would use the result to approximate the power of the test if the true (p_{ij}) were (0.3, 0.2, 0.1, 0.4).

1