Stat 581 Homework 7: Due November 26, 2003

- 1. Let $X_1, ..., X_n$ be i.i.d. $\sim U(0, \theta)$
- (a) Find the MLE $\widehat{\theta_n}$ of θ .
- (b) Show that $\widehat{\theta_n}$ is biased.
- (c) Show that θ_n is consistent.
- (d) Show that $\widehat{\theta_n}$ is unbiased in the limit as $n \to \infty$.
- (e) Find constants k_n and non-degenerate dsn H s.t. $k_n(\widehat{\theta_n} \theta) \to_d Z \sim H$ as $n \to \infty$.
- (f) Show that $Z \sim H$ does not have mean 0. Hence $\widehat{\theta_n}$ is not asymptotically unbiased, in the sense of TPE.
- 2. Let (X_i, Y_i) , i = 1, ..., n be i.i.d. bivariate normal, with $E(X_i) = E(Y_i) = 0$, $var(X_i) = var(Y_i) = 1$ and $Cov(X_i, Y_i) = \rho$. Find the likelihood equation for estimation of ρ . Show that it always (with probability 1) has at least one solution in (-1,1), and that the solution is unique for large enough values of ρ .
- 3. Suppose that $(U_{(1)},....,U_{(n)})$ are the order statistics of a a sample from a uniform U(0,1) distribution. Suppose that V_i , i=1,...,(n+1) are i.i.d standard exponentials on $(0,\infty)$ that is $f_V(v)=e^{-v}I_{(0,\infty)}(v)$. Define $W_k=\sum_{i=1}^k V_i$.
- (a) Show that $(W_j/W_{n+1}; j = 1, ..., n)$ is independent of W_{n+1}
- and $(W_j/W_{n+1}; j = 1, ..., n) =_d (U_{(j)}; j = 1, ..., n).$
- (Hint: Consider the conditional dsn of $(W_j/W_{n+1}; j=1,...,n)$ given W_{n+1} .)
- (b) Use (a) to show that $U_{(|np|)}$ converges a.s. to p.
- (c) Use (a) to show that $(U_{(r)}, U_{(s)})$, appropriately standardized, converges to a bivariate Normal dsn with the variance covariance matrix of Brownian bridge.
- (d) Use (a) to show that if r < s < t, $U_{(r)}$ and $U_{(t)}$ are independent given $U_{(s)}$.
- 4. (a) Suppose $X_1, ..., X_n$ are i.i.d. $U(\theta \psi, \theta + \psi)$. Find the minimal sufficient statistic for (θ, ψ) and the MLE of (θ, ψ) .
- (b) Suppose $X_1, ..., X_n$ are i.i.d. double exponential, each with pdf $f_{\theta}(x) = \frac{1}{2} \exp(-|x \theta|)$. Find the minimal sufficient statistic and the MLE of θ
- 5. Suppose $X_1, ..., X_n$ are i.i.d. from a distribution symmetric about a location parameter θ and with a strictly positive density over the range of X_i . It is proposed to estimate θ by the average of the pth and (1-p)th sample quantiles, $T_n^{(p)} = \frac{1}{2}(F_n^{-1}(p) + F_n^{-1}(1-p))$, where F_n is the empirical distribution function of $X^{(n)} = (X_1, ..., X_n)$.
- (a) Show that the sequence $(T_n^{(p)})$ is consistent for θ , for 0 .
- (b) Compare the ARE of sequences of estimators $(T_n^{(p)})$ of θ for varying p the answer will depend on the density function. How should p be chosen to maximize asymptotic efficiency?
- (c) Evaluate your answer to 5(b) for the two examples of 4(a) and 4(b).