Stat 581 Homework 6: Due November 19, 2003

- 1.(a) TPE P.139, No. 5.23
- (b) TPE P.140, No. 5.24

(These were the questions I meant to set in homework 5)

- 2. Continuing the same question as #1
- (a) Show that the MLE, $\widehat{\theta_n}$ of θ is the integer closest to $\overline{X_n}$, and that this MLE is unbiased.
- (b) Show that if $n \ge 15.5\sigma^2$, them $P(\widehat{\theta_n} = \theta) \ge 0.95$
- (c) Show that $\widehat{\theta_n}$ is consistent.
- (d) Show that $var(\widehat{\theta_n}) = 2 \sum_{1}^{\infty} (2j-1) (1 \Phi((j-\frac{1}{2})n^{\frac{1}{2}}/\sigma).$

(This can be used to show that the variance (like the bound) decays exponentially in n: see TPE P.140)

- 3. Let (X_i, Y_i) , i = 1, ..., n be i.i.d. bivariate normal, with $E(X_i) = E(Y_i) = 0$, $var(X_i) = var(Y_i) = 1$ and $Cov(X_i, Y_i) = \rho$. Find the Cramer-Rao lower bound on the variance of unbiased estimators of ρ . Does the sample correlation r achieve this bound asymptotically? Why/why not?
- 4. Let X_i , i,...m be i.i.d exponential with mean μ and $Y_1,...,Y_n$ be i.i.d exponential with mean λ . Suppose the parameter of interest is $\theta = \mu/\lambda$. Compare the information about θ available from the two samples, with that available when λ is known.
- 5. (a) Suppose $X_1, ..., X_n$ are i.i.d $N(\theta, 1)$, so that $I_1(\theta) = 1$. Let $T_n = \overline{X_n}$ if $|\overline{X_n}| > n^{-1/4}$ and $T_n = a\overline{X_n}$ if $|\overline{X_n}| \le n^{-1/4}$.

Show that $n^{\frac{1}{2}}(T_n - \theta) \to_d N(0, V^2(\theta))$ where $V^2(\theta) = 1$ if $\theta \neq 0$, and $V^2(\theta) = a^2$ if $\theta = 0$.

Choosing |a| < 1, then gives $V^2(\theta) < 1/I_1(\theta)$ at $\theta = 0$. Why does this not violate the CRLB theory?

(b) Suppose that $X_1, ..., X_n$ are i.i.d., with each X_i being $N(\theta, 1)$ with probability $\frac{1}{2}$ and $N(-\theta, 1)$ with probability $\frac{1}{2}$. Evaluate the information about θ . What happens when $\theta = 0$? What does this suggest to you about how you should estimate θ ?