
20. Probability distributions for parameters LM 5.8

20.1 When can a parameter have a distribution?

(i) Sometimes a parameter is itself the outcome of a random process:

for example, the probability of heads varies across a population of coins,

or, the frequency of a genetic variant (allele) varies across the different genetic systems (loci) in our DNA.

(ii) In such cases, assigning a pmf/pdf to the parameter (P(heads) or allele frequency) makes sense. This

probability distribution, assigned from the process giving rise to the parameter, is known as the prior distri-

bution.

(iii) Some believe that a prior distribution can always be assigned; and that this prior distribution expresses

beliefs about values of the parameter in the absence of data.

20.2 Example: from Stat340 final exam

(i) The setup: In a certain population, everyone is equally susceptible to colds. The number of colds suffered

by each person during each winter season can be modeled as the outcome of a Poisson random variable with

mean 5. A new cold prevention drug is introduced, which, for people for whom the new drug is effective

reduces the number of colds to the outcome of a Poisson random variable with mean 3. Unfortunately, the

drug is only effective in 20% of people.

(ii) For people taking the drug: π(5) = P (θ = 5) = 0.8, π(3) = P (θ = 3) = 0.2.

(iii) Fred decides to take the drug. Given that he gets 4 colds that winter, what is the conditional probability

that the drug is effective for Fred?

That is, we want π(θ = 3 | X = 4) where X is the data, the outcome of the Poisson random variable.

(iv) Using Bayes’ Theorem:

π(θ = 3 | X = 4) = P (X = 4 | θ = 3)π(θ = 3)/(P (X = 4 | θ = 3)π(θ = 3) + P (X = 4 | θ = 5)π(θ = 5))

= 0.2× 34 × e−3/(0.2× 34 × e−3 + 0.8× 54 × e−4) = 0.80655/(0.80655 + 3.36897) = 0.19316.

20.3 Using Bayes’ Theorem to get the posterior distribution

(i) Let the prior distribution for parameter θ be π(θ). Let the probability (pmf/pdf) of the data observations

x1, ..., xn be f(x1, ..., xn|θ). Note this is just the likelihood, but with a slight change of notation, as θ is now

a random variable. Then

π(θ | X1 = x1, ..., Xn = xn) = f(x1, ..., xn | θ).π(θ)/
∫
θ
f(x1, ..., xn | θ) π(θ) dθ

This is the posterior distribution for θ given data x1, ..., xn.

(ii) Supppose T is a sufficient statistic for θ. Then the likelihood factorizes as

f(x1, ..., xn | θ) = f(x1, ..., xn|T = t).fT (t | θ)

where the first term does not depend on θ, so

π(θ | T = t) = π(θ | X1 = x1, ..., Xn = xn) = fT (t | θ).π(θ)/
∫
θ
fT (t | θ) π(θ) dθ

This is the posterior distribution for θ given the data x1, , , , .xn (or given the value t of T ).
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21. Conjugate prior distributions LM Examples 5.8.3, 5.8.4

21.1 Normal data and Normal prior

Certain priors “match” a given data model, to give a posterior for θ that is the same family as the prior. This

can save a lot of work.

For example: X1, ..., Xn ∼ N(µ, σ2) with σ2 known, so sufficient T = Xn ∼ N(µ, σ2/n).

Suppose the prior for µ is N(0, τ2). Then

π(µ|Xn) ∝ exp(− µ2

2τ2
− n(xn − µ)2

2σ2
) ∝ exp(−1

2
((

1

τ2
+

n

σ2
)µ2 − 2xnµn

σ2
)

so posterior for µ is N(xnnK/σ2,K) where K = ( 1
τ2

+ n
σ2 )

−1.

Note if n is large, or τ2 is large, this is approx N(xn, σ
2/n).

21.2 Binomial data and Beta Prior LM Example 5.8.2

Suppose X1, ..., Xn are Bin(1, θ), so sufficient T =
∑n

i=1Xi ∼ Bin(n, θ).

Suppose prior for θ is Γ(r + s)θr−1(1− θ)s−1/Γ(r)Γ(s) on 0 ≤ θ ≤ 1. (Beta(r,s) density).

Then π(θ|t) ∝ θt+r−1(1− θ)n−t+s−1 so we know that the posterior must be Beta(t+ r, n− t+ s).

21.3 Poisson data and Gamma Prior LM Example 5.8.3

Suppose X1, ..., Xn are Po(θ), so sufficient T =
∑n

i=1Xi ∼ Po(nθ). Suppose prior for θ is the Gamma pdf

G(s, β). Then

π(θ|t) ∝ θs−1 exp(−βθ). exp(−nθ)(nθ)t ∝ θt+s−1 exp(−(β + n)θ)

so the posterior for θ is G(t+ s, β + n).

21.4 The marginal distribution of the data random variables LM Example 5.8.4

Also of interest sometimes is the marginal probability of the data – integrating over the parameter:

For example: the overall probability Fred has k colds: P (k colds) = (0.2 e−33k + 0.8 e−55k)/k!.

In 21.1, for example

fXn

(x) =

∫
µ
fXn

(x|µ)π(µ) dµ ∝
∫
µ
exp(−n(x− µ)2/(2σ2)− µ2(2τ2)) dµ

∝
∫
µ
exp(−(1/2K)(µ− nxK/σ2)2 + (n2x2K/σ4)− (nx2)/(2σ2)) dµ

∝ exp(−Knx2((n/σ2)− (1/K))/(2σ2)) ∝ exp(−Knx2/(2σ2τ2))

Thus, we find Xn is Normal with mean 0 and variance σ2τ2/(nK) = (σ2/n) + τ2.

21.5 Continuing 21.3 LM Example 5.8.4

Suppose n = 1, i.e. we have a single Poisson observation, T ∼ Po(θ):

P (T = t) =

∫
θ
P (T = t | θ) π(θ) dθ =

∫
∞

0
βsθt+s−1 exp(−(1 + β)θ) dθ / t!Γ(s)

= (βs/t!Γ(s))

∫
∞

0
θt+s−1 exp(−(1 + β)θ) dθ = (βs/t!Γ(s))(Γ(t+ s)/(β + 1)(t+s))

= (Γ(t+ s)/t!Γ(s))(
β

β + 1
)s(

1

β + 1
)t = (

t+ s− 1

t
)(

β

β + 1
)s(

1

β + 1
)t

which is negative binomial!!
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22: Bayesian estimation using loss functions LM Theorem 5.8.1

22.1: Loss function and Risk function LM Pp.419-420.

(i) Defn: Let w be an estimate for θ, based on the data x1, ..., xn, or on the value of the sufficient statistics

T = t. Then the loss function, L(w, θ) measures the cost of estimating by w when θ is true value.

(ii) L(θ, θ) = 0, and L(w, θ) ≥ 0.

(iii) Defn; the Bayes risk is the posterior expected loss, where expectations is over the distribution of θ given

T = t; R(w) =
∫
θ L(w, θ) π(θ | T = t) dθ.

(iv) Note: θ is the random thing in this expression. The data are fixed.

22.2: Point estimation with squared error loss

(i) L(w, θ) = (w − θ)2. Note the difference: m.s.e = E((W − θ)2) where W is random.

posterior expected loss = R(w) = E(w − θ)2 where θ is random.

(ii) Want to minimise posterior expected loss or R(w) =
∫
θ(w − θ)2π(θ|T = t) dθ.

Differentiating w.r.t. w: R′(w) =

∫
θ
2(w − θ)π(θ|T = t) dθ = 0

or

∫
θ
w π(θ|T = t) dθ =

∫
θ
θ π(θ|T = t) dθ

or w = w

∫
θ
π(θ|T = t) dθ = E(θ|T = t)

The estimate is the mean of the posterior distribution.

(iii) Example: X1, ..., Xn i.i.d. N(µ, σ2), where σ2 is known. Then Xn is sufficient for µ.

If prior distribution for µ is N(0, τ2) then π(θ | Xn = xn) is N(xnnK/σ2,K) where K = ( 1
τ2

+ n
σ2 )

−1.

So Bayes estimate of θ for squared error loss is xnnK/σ2.

22.3: Point estimation with absolute error loss

(i) L(w, θ) = |w − θ|. Want to minimise posterior expected loss or R(w) =
∫
θ |w − θ| π(θ|T = t) dθ:

R(w) =

∫ w

−∞

(w − θ) π(θ|T = t) dθ +

∫
∞

w
(θ − w) π(θ|T = t) dθ

R′(w) = 0 +

∫ w

−∞

π(θ|T = t) dθ + + 0 −
∫

∞

w
π(θ|T = t) dθ = 0

or P (θ ≤ w | T = t) = P (θ ≥ w | T = t)

The estimate is the median of the posterior distribution.

(ii) In the Normal example above: the posterior median is the same as the posterior mean, as the Normal

distribution is symmetric.

22.4: Posterior interval estimation

(i) We can also make interval probability statements based on the posterior distribution: these are probabilities

about the random θ. Contrast this with confidence intervals, where the probability statement is about the

random T .

(ii) Example: the Normal example again. π(θ | Xn = xn) is N(xnnK/σ2,K) where K = ( 1
τ2

+ n
σ2 )

−1.

P (xnnK/σ2 −
√
Kzα/2 ≤ θ ≤ xnnK/σ2 +

√
Kzα/2) = 1− α

Or, (xnnK/σ2 −
√
Kzα/2, xnnK/σ2 +

√
Kzα/2) is a Bayesian posterior probability interval for θ.

(iii) If τ2 is very large: K ≈ σ2/n, and the interval becomes (xn − σzα/2/
√
n, xn + σzα/2/

√
n).

This looks like our confidence interval for µ, but recall again the interpretation is quite different.
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