20. Probability distributions for parameters LM 5.8

20.1 When can a parameter have a distribution?

(i) Sometimes a parameter is itself the outcome of a random process:

for example, the probability of heads varies across a population of coins,

or, the frequency of a genetic variant (allele) varies across the different genetic systems (loci) in our DNA.

(ii) In such cases, assigning a pmf/pdf to the parameter (P(heads) or allele frequency) makes sense. This
probability distribution, assigned from the process giving rise to the parameter, is known as the prior distri-

bution.

(iii) Some believe that a prior distribution can always be assigned; and that this prior distribution expresses
beliefs about values of the parameter in the absence of data.

20.2 Example: from Stat340 final exam

(i) The setup: In a certain population, everyone is equally susceptible to colds. The number of colds suffered
by each person during each winter season can be modeled as the outcome of a Poisson random variable with
mean 5. A new cold prevention drug is introduced, which, for people for whom the new drug is effective
reduces the number of colds to the outcome of a Poisson random variable with mean 3. Unfortunately, the
drug is only effective in 20% of people.

(ii) For people taking the drug: m(5) = P(f =5) = 0.8, 7(3) = P(6 = 3) = 0.2.

(iii) Fred decides to take the drug. Given that he gets 4 colds that winter, what is the conditional probability
that the drug is effective for Fred?

That is, we want 7(6 = 3 | X = 4) where X is the data, the outcome of the Poisson random variable.

(iv) Using Bayes’ Theorem:
70=3|X=4) = PX=4|0=3)n(0=3)/(P(X=4|0=3)71(0=3)+P(X=4]|0=5)7(0=05))

= 02x3'xe3/(02x3  xe?4+08x5"xe™?) = 0.80655/(0.80655 + 3.36897) = 0.19316.

20.3 Using Bayes’ Theorem to get the posterior distribution

(i) Let the prior distribution for parameter § be 7(6). Let the probability (pmf/pdf) of the data observations
X1y ..., Ty be f(x1,...,2,]0). Note this is just the likelihood, but with a slight change of notation, as  is now

a random variable. Then
70| X1 = 21,0 X = 2n) = f(@1,0s 2 | 0)7 //f:vl,.. o | 0) 7(6) db

This is the posterior distribution for 6 given data x1, ..., Ty.

(ii) Supppose T is a sufficient statistic for §. Then the likelihood factorizes as

f(xl,...,mn ’ Q) = f(xl,...,xn\T = t).fT(t ‘ 9)

where the first term does not depend on @, so
70| T=1) = 70| X1= 21,0, X —an) = frlt|60).7 //th\e d

This is the posterior distribution for 6 given the data 1, ,,,.x, (or given the value t of T').



21. Conjugate prior distributions LM Examples 5.8.3, 5.8.4

21.1 Normal data and Normal prior

Certain priors “match” a given data model, to give a posterior for 6 that is the same family as the prior. This
can save a lot of work.

For example: Xi,...,X,, ~ N(u,o?) with 02 known, so sufficient T'= X,, ~ N(u,o?/n).

Suppose the prior for p is N(0,72). Then

2 —_— 2 —
_— 1 n(Ty, — u) 1,1 n., o 2Tpun
m(p|Xn) o eXP(—TTQ - T) X eXP(—§((ﬁ + g) - )

so posterior for p is N(Z,nK/o?, K) where K = (T% + &)L

Note if n is large, or 72 is large, this is approx N (T, 02%/n).

21.2 Binomial data and Beta Prior LM Example 5.8.2

Suppose X1, ..., X,, are Bin(1,0), so sufficient 7= 37" ; X; ~ Bin(n,0).

Suppose prior for § is T'(r + s)0" (1 — §)*~1/T'(r)T'(s) on 0 < # < 1. (Beta(r,s) density).

Then 7(8]t) oc 7 =1(1 —)"~tT5~1 50 we know that the posterior must be Beta(t +r,n —t + s).
21.3 Poisson data and Gamma Prior LM Example 5.8.3

Suppose X1, ..., X, are Po(0), so sufficient "= Y"1 ; X; ~ Po(nd). Suppose prior for  is the Gamma pdf
G(s, ). Then
7(0]t) o< 6°Lexp(—pB8). exp(—nbh)(nf)! o« T Lexp(—(8 4 n))

so the posterior for 6 is G(t + s, 53 + n).

21.4 The marginal distribution of the data random variables LM Example 5.8.4

Also of interest sometimes is the marginal probability of the data — integrating over the parameter:
For example: the overall probability Fred has k colds: P(k colds) = (0.2 e™33% + 0.8 e55%) /k!.

In 21.1, for example

fx(x) = /fon(fﬂﬂ)ﬂ(u) dp o Lexp(—n(x — 1)?/(20%) = p2(27%)) dp
x Lexp(—(1/2K)(M —neK/o®)? + (n*a’K/o") — (na?)/(207)) du
x exp(—Knz?((n/o?) — (1/K))/(20%)) o exp(—Knz?/(20%7%))

Thus, we find X,, is Normal with mean 0 and variance 0272/(nK) = (02/n) + 72

21.5 Continuing 21.3 LM Example 5.8.4

Suppose n = 1, i.e. we have a single Poisson observation, ' ~ Po(#):
P(T=1) — /P(T —t]0)n(0)d6 — / 3595 L exp(— (1 + B)9) dO | tIT(s)
0 0

= (8°/1T(s)) /Ooo 0" exp(—(1+8)0) df = (B*/tT(s))(D(t+5)/(8 + 1))

_ (I‘(t—i—s)/t!I‘(s))(Bﬁ_H)s(ﬁl_H)t = (t+i—1)(5+1)5(

which is negative binomiall!!



22: Bayesian estimation using loss functions LM Theorem 5.8.1
22.1: Loss function and Risk function LM Pp.419-420.

(i) Defn: Let w be an estimate for 6, based on the data x1, ..., x,, or on the value of the sufficient statistics
T =t. Then the loss function, L(w,#) measures the cost of estimating by w when @ is true value.
(ii) L(#,0) = 0, and L(w,f) >0
(iii) Defn; the Bayes risk is the posterior expected loss, where expectations is over the distribution of 6 given
T =t Rw)= [y L(w,0) 7(0 | T =1t) db.
(iv) Note: 6 is the random thing in this expression. The data are fixed.
22.2: Point estimation with squared error loss
(i) L(w,0) = (w—6)?. Note the difference: m.s.e = E((W — 0)?) where W is random.
posterior expected loss = R(w) = E(w — 0)? where 6 is random.

(ii) Want to minimise posterior expected loss or R(w) = [,(w — 0)*7(0|T = t) d6.
Differentiating w.r.t. w: R (w) = /2(w —OrOT=t)dd = 0
or /9w7r(9|T:t)d9 = /971'9|T_t
or  w = w/ew(9|T:t)d9 — BT =1)

The estimate is the mean of the posterior distribution.

(iii) Example: X1, ..., X, i.i.d. N(u,0?), where o2 is known. Then X,, is sufficient for .

If prior distribution for u is N(0,72) then 7(0 | X,, = #,) is N(Z,nK/o? K) where K = (T—l2 S
So Bayes estimate of 6 for squared error loss is Z,nK /o>

22.3: Point estimation with absolute error loss

(i) L(w,0) = |w— 6|. Want to minimise posterior expected loss or R(w) = [, |w — 8| 7(0|T =t) db:

R(w) — /w (w— 6) (9|T_t)d9+/ (6 —w) 7(6]T = 1) do

R(w) = o+/ (01T = 1) do + +0—/ 2O =1) do =0

w
or PO<w|T=t) = PO>w|T=t)
The estimate is the median of the posterior distribution.

(ii) In the Normal example above: the posterior median is the same as the posterior mean, as the Normal

distribution is symmetric.
22.4: Posterior interval estimation

(i) We can also make interval probability statements based on the posterior distribution: these are probabilities
about the random #. Contrast this with confidence intervals, where the probability statement is about the

random 7.

(ii) Example: the Normal example again. (0 | X,, = Zp,) is N(TankK /o2, K) where K = (% 4+ %)=L
P(@ynK/o* — \/Eza/z < 0 <TmK/o*+ \/Eza/g) = 1l-«a

Or, (T ,nK/o? — \/Eza/g, ZonK/o? + \/EZQ/Q) is a Bayesian posterior probability interval for 6.
(iii) If 72 is very large: K =~ o2/n, and the interval becomes (7, — 02a/2/VMy Tn + 02as2/v/n)-

This looks like our confidence interval for u, but recall again the interpretation is quite different.



