
18. Interval Estimation LM 5.3

18.1 Uncertainty in point estimates

(i) When we have a point estimate, for example, xn, for the mean θ of a distribution (Poisson, Normal, ....),

we would like to know how close to the true θ-value it is likely to be.

(ii) But the estimate is just a number: to consider this problem we have to consider the random variable –

the estimator, such as Xn.

(iii) We have previously considered the distributions of the estimator, computing such things as mean square

error. This is one way of considering how close to the true θ-value our estimate might be.

18.2 Confidence intervals

(i) An alternative way is to compute a confidence interval.

(ii) Definition: Given an n-sampleX1, ..., Xn from some (discrete or continuous) pdf/pmf indexed by parameter

θ, let L(X1, ..., Xn) and U(X1, ..., Xn) be two functions of the data random variables, such that L ≤ U for all

possible samples x1, ..., xn. If

Pθ(L(X1, ..., Xn) ≤ θ ≤ U(X1, ..., Xn)) = (1− α) for all θ

then (L(x1, ..., xn), U(x1, ..., xn)) is a (1− α)-level confidence interval for θ.

(iii) Note: the interval (L(x1, ..., xn), U(x1, ..., xn)) is just numbers; there are no probabilities associated with

these numbers, nor with θ. The probabilities concern the random intervals (L(X1, ..., Xn), U(X1, ..., Xn))

which we might get on repeating the sample and interval construction procedure many times.

(iv) Generally we think of α, the probability the random interval does not cover the true θ as small (e.g.

0.05), and construct (e.g.) 95% confidence intervals. It is conventional to have α/2 of the probability falling

at each end, although this is not actually the shortest interval if the distribution is not symmetric.

(v) Even then, there are many, many possible functions L and U of the data random variables. We use

sufficiency to consider only ones that are functions of the sufficient statistic.

18.3 Confidence interval for the mean of a Normal distribution

We will do this one, because it is the classic example. We will pretend we know that the average of independent

Normal random variables is Normal (this should be proved in Stat 342).

Suppose X1, ..., Xn are i.i.d from N(θ, σ2) where σ2 is known. We do know that Xn is sufficient for θ, that

E(Xn) = θ and var(Xn) = σ2/n. So assuming Xn is Normal, (Xn − θ)
√
n/σ is N(0, 1),

P (Xn − zα/2σ/
√
n ≤ θ ≤ Xn + zα/2σ/

√
n) = P (−zα/2 ≤ (Xn − θ)

√
n/σ ≤ zα/2) = (1− α)

where zα/2 is such that P (Z > zα/2) = α/2 if Z ∼ N(0, 1).

18.4 Confidence interval for θ given a sample from U(0, θ).

Suppose X1, ..., Xn are i.i.d. U(0, θ). We know W = max(Xi) is sufficient for θ and P (W ≤ kθ) = kn,

(0 < k < 1). So

P (W < θ < W/k) = P (W > kθ) = 1− kn

So if k = α1/n, (max(xi),max(xi)/k) is (1− α)-level confidence interval for θ.

Note: This is an example where it is more natural NOT to use a symmetric interval.

Example: α = 0.05, n = 25; interval is (max(xi), 1.127max(xi)).
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19. Examples of interval estimation

19.1 Confidence interval for a binomial proportion

(i) X1, ..., Xn are i.i.d Bin(1, θ). We know T =
∑n

1 Xi ∼ Bin(n, θ) is sufficient for θ.

(ii) Discrete distributions are a nuisance because first, we have to sum probabilities, and, second we have to

distinguish ≤ and <. Instead we assume n is “large enough” and use a Normal approximation.

(iii) So T/n is approx N(θ, θ(1− θ)/n), so

P (−zα/2 < (T/n − θ)/
√

θ(1− θ)/n < zα/2) = (1− α)

(iv) In principle this could be solved (numerically at least) to give an interval for θ. However, since this

Normal distribution is already an approximation, it is simple to approximate the variance by (t/n)(1− t/n)/n

where t is the value of T . Then

(t/n− zα/2

√

(t/n)(1− t/n)/n, (t/n) + zα/2

√

(t/n)(1− t/n)/n)

is a (1− α)-level confidence interval for θ.

19.2 Confidence interval for the rate parameter of an exponential

Y1, ..., Yn i.i.d exponential E(λ). We know T =
∑n

1 Yi is sufficient for λ, and T ∼ G(n, λ) so λT ∼ G(n, 1).

This is now a fixed distribution, and we can find the α/2 and (1 − α/2) points of the distribution, say g−α/2
and g+α/2 (These will depend on n.) Then

P (g−α/2/T < λ < g+α/2/T ) = P (g−α/2 < λT < g+α/2) = (1− α)

So (g−α/2/t, g+α/2/t) is (1− α)-level confidence interval for λ.

19.3 Confidence interval for the variance in N(0, σ2).

X1, ...., Xn i.i.d N(0, σ2). We know T =
∑n

1 X
2
i is sufficient for σ2 and T ∼ σ2χ2

n or T/σ2 ∼ χ2
n ≡

G(n/2, 1/2). This is now a fixed distribution, and we can find the α/2 and (1−α/2) points of the distribution,

say c−α/2 and c+α/2 (These will depend on n.) Then

P (T/c+α/2 < σ2 < T/c−α/2) = P (c−α/2 < T/σ2 < c+α/2) = (1− α)

So (t/c+α/2, t/c−α/2) is (1− α)-level confidence interval for λ.

19.4 Sample size

(i) The length of the confidence interval, in each given example, will depend on n. If n is larger the confidence

interval will be shorter.

(ii) We can (try to) find the n to make the confidence interval no more than a given length. For example, in

the case of N(θ, σ2) with σ2 known, the length is 2zα/2σ/
√
n.

(iii) For the case of a binomial proportion, σ is replaced by the Bernoulli standard deviation
√

θ(1− θ), which

depends on the unknown θ. One solution, for determining sample size, is to take the θ for which this is largest:

i.e. θ = 1/2,
√

θ(1− θ) = 1/2 (see LM P.373). Then if we compute the required sample size for θ = 1/2 we

can be sure it will be good enough whatever the true θ.
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