14. Maximum likelihood estimation: MLE (LM 5.2)

14.1 Definition, method, and rationale

(i) The maximum likelihood estimate of parameter θ is the value of θ which maximizes the likelihood $L(\theta)$.

(ii) For data values of an n-sample $x_1, ..., x_n$, outcomes of pdf $f_X(\cdot), L_n(\theta) = \prod_i f_X(x_i; \theta)$.

(iii) It is therefore often easier to maximize $\ell_n(\theta) = \log L_n(\theta) = \sum_i \log f_X(x_i; \theta)$.

This is equivalent to (ii), since log is an increasing function.

(iv) For the fixed data we have observed, the MLE value of θ gives higher probability to these data than does any other value of θ . Note we are comparing θ -values as explanations of the observed data $x_1, ..., x_n$. We are not considering other data outcomes we might have got.

(v) But, when we look at the properties of the maximum likelihood estimator (also abbreviated MLE– be careful) (e.g $\overline{X_n}$) then we are considering probabilities for other values it might have had.

14.2 Discrete examples

(i) Bernoulli/Binomial: $X_1, ..., X_n$ i.i.d. $Bin(1, \theta), f_X(x) = \theta^x (1-\theta)^{1-x}, x = 0$ or 1. Let $T = \sum_{i=1}^n X_i$.

$$
L_n(\theta) = \prod_i f_X(x_i) = \theta^{\sum_i x_i} (1 - \theta)^{\sum_i (1 - x_i)}
$$

$$
\ell_n(\theta) = (\sum_{i=1}^n x_i) \log \theta + (\sum_{i=1}^n (1 - x_i)) \log(1 - \theta) = t \log \theta + (n - t) \log(1 - \theta)
$$

 $d\ell/d\theta = t/\theta - (n-t)/(1-\theta) = 0$ gives MLE t/n . The maximum likelihood estimator is $T/n = \overline{X_n}$. (ii) Poisson: $X_1, ..., X_n$ i.i.d. $\mathcal{P}_0(\theta), f_X(x) = e^{-\theta} \theta^x/x!$, $x = 0, 1, 2, ...$ Let $T = \sum_{i=1}^n X_i$ and $t = \sum_{i=1}^n x_i$.

$$
L_n(\theta) = \prod_i f_X(x_i) = \exp(-n\theta) \theta^{\sum_i x_i} / \prod_i x_i! \qquad \ell_n(\theta) = -n\theta + (\sum_{i=1}^n x_i) \log \theta = -n\theta + t \log \theta
$$

 $d\ell/d\theta = n - t/\theta = 0$, gives MLE t/n . The maximum likelihood estimator is $T/n = \overline{X_n}$.

14.3 Continuous examples

(i) Exponential: $X_1, ..., X_n$ i.i.d. $\mathcal{E}(\lambda)$, $f_X(x) = \lambda e^{-\lambda x}$, $x \ge 0$. Let $T = \sum_{i=1}^n X_i$ and $t = \sum_{i=1}^n x_i$.

$$
L_n(\lambda) = \prod_i f_X(x_i) = \lambda^n \exp(-\lambda \sum_{i=1}^n x_i), \quad \ell_n(\lambda) = n \log \lambda - \lambda (\sum_{i=1}^n x_i) = n \log \lambda - \lambda t,
$$

 $d\ell/d\lambda = n/\lambda - t = 0$ gives MLE n/t . The maximum likelihood estimator is $n/T = 1/\overline{X_n}$. (ii) $X_1, ..., X_n$ i.i.d. with $f_X(x; \alpha) = \alpha x^{\alpha-1}$, $0 \le x \le 1$. Let $W = \prod_{i=1}^n X_i$ and $w = \prod_{i=1}^n x_i$.

$$
L_n(\alpha) = \prod_i f_X(x_i; \alpha) = \alpha^n (\prod_{i=1}^n x_i)^{\alpha-1}, \quad \ell_n(\alpha) = n \log \alpha + (\alpha - 1) \log w
$$

 $d\ell/d\alpha = n/\alpha + \log w = 0$ gives MLE $-n/\log w$. The maximum likelihood estimator is $-n/\log W$.

14.4 A non-standard example $X_1, ..., X_n$ uniform $U(0, \theta)$; $f_X(x; \theta) = 1/\theta$, $0 \le x \le \theta$. $L(\theta) = (1/\theta)^n$ provided $0 \le x_i \le \theta$ for all *i*, and 0 otherwise.

That is $L(\theta) = (1/\theta)^n$ provided max $(x_i) \leq \theta$, and 0 otherwise.

So choose θ as small as possible so that $\theta \ge \max(x_i)$. That is the MLE is $\max_i(X_i)$.

15 Conditional pdf and pmf LM 3.11

15.1 Definition: discrete case

(i) For any two discrete random variables X and W , we the conditional probability mass function is $p_{X|W}(x|w) = P(X = x|W = w) = p_{X,W}(x, w)/p_W(w)$, for w such that $p_W(w) > 0$. Note this is a pmf for X .

(ii) For $X_1, ..., X_n$ an n-sample from a discrete distribution p_X , and W some function of $X_1, ..., X_n$ the conditional pmf is $P(x_1, ..., x_n|W = w) = \left(\prod_{i=1}^n p_X(x_i)\right) / p_W(w)$ over all $(x_1, ..., x_n)$ giving the value $W = w$.

15.2 Examples

(i) $X_1, ..., X_n$ i.i.d $Bin(1, \theta), W = \sum_{i=1}^n X_i \sim Bin(n, \theta)$ (LM. P.399) $p_X(x) = \theta^x (1-\theta)^{1-x}$ and $p_W(w) = {n \choose x}$ $\int_{w_n}^u \rho^w (1-\theta)^{n-w}$, and $\sum_{i=1}^n x_i = w$. $P(x_1, ..., x_n \mid W = w) = \prod_{i=1}^{w_n}$ $i=1$ $\theta^{x_i}(1-\theta)^{1-x_i})/(\binom{n}{n}$ $\binom{n}{w} \theta^w (1-\theta)^{n-w} = 1/(\frac{n}{w})$ $\binom{n}{w}$

Given the total number of successes, the probability of any particular sequence is $(1 / (number of ways))$ of arranging w successes in n trials (and does not depend on θ).

(ii)
$$
X_1, ..., X_n
$$
 i.i.d. $\mathcal{P}o(\theta), W = \sum_{i=1}^n X_i \sim \mathcal{P}o(n\theta)$
\n $p_X(x) = e^{-\theta} \theta^x / x!$ and $p_W(w) = e^{-n\theta} (n\theta)^w / w!$, and $\sum_{i=1}^n x_i = w$.
\n
$$
P(x_1, ..., x_n \mid W = w) = (\prod_{i=1}^n e^{-\theta} \theta^x / x!) / (e^{-n\theta} (n\theta)^w / w!) = (w! / \prod_{i=1}^n x_i!) . (1/n)^w
$$

Again we find the conditional probability dows not depend on θ .

Note, if $n = 2$, this conditional pdf is $Bin(w, \frac{1}{2})$.

15.3 The conditional pdf: continuous case (LM 3.11)

(i) We define the conditional pdf $f_{X|W}(x|w) = f_{X,W}(x, w)/f_{W}(w)$, for w such that $f_{W}(w) > 0$. Note, for each w, $f_{X|W}(x|w)$ is a pdf for X.

(ii) This definition is motivated by

$$
P(x < X \le x + \delta x \mid w < W \le w + \delta w) = \frac{P(x < X \le x + \delta x \cap w < W \le w + \delta w)}{P(w < W \le w + \delta w)} \approx \frac{f_{X,W}(x, w) \delta x \delta w}{f_W(w) \delta w}
$$

(iii) For $X_1, ..., X_n$ an n-sample from a continuous pdf f_X , and W some function of $X_1, ..., X_n$ the conditional pdf is $f(x_1, ..., x_n \mid W = w) = \prod_{i=1}^n f_X(x_i) / f_W(w)$ over all $(x_1, ..., x_n)$ giving the value $W = w$.

15.4 Examples

(i) $X_1, ..., X_n$ i.i.d. $\mathcal{E}(\lambda), W = \sum_{i=1}^n X_i \sim G(n, \lambda).$ $f_X(x; \lambda) = \lambda e^{-\lambda x}$ on $x \geq 0$; $f_W(w; \lambda) = (\lambda^n / \Gamma(n)) w^{n-1} e^{-\lambda w}$ on $w \geq 0$, and $w = \sum_{i=1}^n x_i$. The conditional pdf of the sample, given $W = w$, is

$$
f(x_1, ..., x_n \mid W = w) = \frac{\prod_{i=1}^n \lambda \exp(-\lambda x_i)}{(\lambda^n/\Gamma(n)).w^{n-1}e^{-\lambda w}} = \frac{\Gamma(n)}{w^{n-1}}
$$

Again, we have managed to choose a W such that the conditional pdf does not depend on the parameter.

(ii) $X_1, ..., X_n$ i.i.d. $U(0, \theta), W = \max_{i=1,...,n} X_i$ $f_X(x;\theta) = 1/\theta$ on $0 \le x \le \theta$; $f_W(w;\theta) = nw^{n-1}/\theta^n$ on $0 \le w \le \theta$, and $w = \max_i x_i$. The conditional pdf of the sample, given $W = w$, is

$$
f(x_1, ..., x_n \mid W = w) = \frac{\prod_{i=1}^n (1/\theta)}{nw^{n-1}/\theta^n} = \frac{1}{nw^{n-1}}
$$

Again, we have managed to choose a W such that the conditional pdf does not depend on the parameter.

16. Sufficient statistics and the factorization criterion LM 5.6

16.1 Definition LM P.407.

(i) A statistic $T(X_1, ..., X_n)$ is sufficient for inferences about parameter θ is the conditional pmf/pdf of the sample, given the value of T does not depend on θ .

(ii) Examples: 15.2 (i),(ii) and 15.4 (i),(ii): in each case we found a W ($\sum_i X_i$ or $\max_i(X_i)$) for which $f(x_1, ..., x_n|W = w)$ did not depend on the parameter θ . In each case the statistic W is sufficient for θ .

(iii) The idea is that the sufficient statistic contains all the information about θ that there is in the entire sample. If you know the value of the sufficient statistic, you will not gain anything more by knowing $(x_1, ..., x_n)$. (iv) Example: 15.2 (i) is the clearest. If you know the number of sucesses $W = \sum_{1}^{n} X_i \sim Bin(n, \theta)$, you know as much about θ as if you know the complete sequence of successes and failures (1 and 0).

16.2 Factorizing the Likelihood LM P.407, Definition 4.6.1.

(i) Note, by definition, $f(x_1, ..., x_n|T = t) = f(x_1, ..., x_n)/f_T(t)$, so in likelihood terms we have

$$
L_n(\theta) = f(x_1, ..., x_n; \theta) = f(x_1, ..., x_n | T = t) f_T(t; \theta)
$$

$$
\ell_n(\theta) = \log f(x_1, ..., x_n | T = t) + \log f_T(t; \theta)
$$

Conversely, if the likelihood factorizes in this way, with the first term not depending on θ then T is sufficient. (ii) Note the MLE will depend only on T; the conditional term is just a "constant" (multiplicative in the likelihood, additive in the log-likelihood). It does not affect the value of θ that maximizes $L(\theta)$ or $\ell_n(\theta)$.

(iii) Recall it is *relative* values of the likelihood that matter; we compare the likelihoods for different θ -values for the same data. Note $L_n(\theta)/L_n(\theta^*) = f_T(t;\theta)/f_T(t;\theta^*)$ also depends only on the value t of the sufficient statistic T, and not otherwise on x_1, \ldots, x_n .

16.3 Fundamental principle: all inferences should be based only on sufficient statistics. Why?

(i) They contain "all the information"

(ii) They determine the (log-)likelihood function, up to a constant factor.

(iii) Rao-Blackwell Theorem: Approximate Statement only $(LM P.405)$: If an estimator W is not a function only of the sufficient statistic, and T is sufficient, then there is a function of T which, for every θ ,

(a) has the same expectation as W , and (b) has smaller mean square error than W .

(Subject to some conditions, there is one and only one such function of T.)

(iv) Example: X_1, \ldots, X_n i.i.d. $U(0, \theta), T = \max_i X_i$ is sufficient (see 15.4 (ii)). MoM estimator $2X_n$ is unbiased, but not a function of T. Estimator $(n+1)T/n$ is also unbiased and has smaller variance or mse.

16.4 A (second) factorization criterion (LM P403)

(i) It would be a pain to have to identify T, and then check the conditional pdf $f(x_1, ..., x_n|T = t)$ to make sure it does not depend on θ . Fortunately, we don't have to.

(ii) **Theorem:** $T = h(X_1, ..., X_n)$ is sufficient for θ **if and only if** $L_n(\theta) = g(h(x_1, ..., x_n); \theta) \cdot b(x_1, ..., x_n)$. **Proof:** If T is sufficient, this holds with $g(h; \theta) \equiv f_T(h; \theta)$ and $b(x_1, ..., x_n) = f(x_1, ..., x_n | T = t)$.

Conversely, if we have the factorization, it can be shown that $g(h; \theta) \propto f_T(h; \theta)$, where the factor does not depend on θ , so then we have previous factorization and T is sufficient (LM P.404).

(iii) Conclusion: To find sufficient statistics:

(a) write down the (log)-likelihood; (b) Find what functions of $(x_1, ..., x_n)$ are *inextricably mixed up with* θ ;

(c) These are the sufficient statistics!

Note: as n case of $U(0, \theta)$ the "mixed up with" may come through the range on the r.v.s.