14. Maximum likelihood estimation: MLE (LM 5.2)

14.1 Definition, method, and rationale

(i) The maximum likelihood estimate of parameter 6 is the value of # which maximizes the likelihood L(6).
(ii) For data values of an n-sample 1, ..., z,, outcomes of pdf fx(-), Ln(0) = TI; fx(x:;6).

(iii) It is therefore often easier to maximize £, (0) = logL,(0) = Y, log fx(x;;0).

This is equivalent to (ii), since log is an increasing function.

(iv) For the fixed data we have observed, the MLE value of # gives higher probability to these data than
does any other value of . Note we are comparing 6-values as explanations of the observed data 1, ..., z,. We
are not considering other data outcomes we might have got.

(v) But, when we look at the properties of the maximum likelihood estimator (also abbreviated MLE- be

careful) (e.g X,,) then we are considering probabilities for other values it might have had.

14.2 Discrete examples
(i) Bernoulli/Binomial: X, ..., X,, i.i.d. Bin(1,0), fx(z) = 0*(1—0)'"%*, 2 =0o0r 1. Let T =1, X;.

Lo(0) = J[fx(@) = 627 (1 — g)2i==)

0,(0) = (Z x;)logh + (Z(l —x;))log(1—0) = tlogh+ (n—t)log(l—0)
i=1 i=1
dt/do = t/6 —(n—1t)/(1—-0) = 0 gives MLE t/n. The maximum likelihood estimator is T'/n = X,.
(ii) Poisson: Xi,..., X, i.i.d. Po(f), fx(z) = e %0%/2!, 2 =0,1,2,.... Let T =", X; and t = 3", ;.

n

La(0) = [[fx(z) = eXp(—nG)HZi“/Hxi! () = —nb + (O_xi)logd = —nb+tlogh

i=1
dl/dd = n—t/0 = 0, gives MLE ¢/n. The maximum likelihood estimator is T'/n = X,,.

14.3 Continuous examples
(i) Exponential: X7i,..., X, ii.d. EN), fx(z) = Xe™ 2>0. Let T=Y", X; and t = X7, ;.

Ly(\) = [I/x(@) = /\nexp(—kiwi% ln(A) = nlogA — A(zn:ﬂ%) = nlogA— A,
i i=1 i=1

dl/d\ = n/\—t = 0 gives MLE n/t. The maximum likelihood estimator is n/T = 1/X,,.
(i) X1,..., Xy id.d. with fx(z;0) = ax®™ 1, 0<2 < 1. Let W =[[1 X; and w = [[}_, ;.

Ly(a) = fo(m;a) = a"(Hmi)o‘_l, ly(a) = nloga + (a—1)logw

dl/da = n/a + logw = 0 gives MLE —n/logw. The maximum likelihood estimator is —n/log W.

14.4 A non-standard example X, ..., X, uniform U(0,0); fx(z;0) =1/0,0 < x < 6.
L(6) = (1/0)" provided 0 < z; < 0 for all i, and 0 otherwise.

That is L(#) = (1/6)™ provided max(z;) < 6, and 0 otherwise.

So choose 6 as small as possible so that § > max(x;). That is the MLE is max;(X;).



15 Conditional pdf and pmf LM 3.11

15.1 Definition: discrete case

(i) For any two discrete random variables X and W, we the conditional probability mass function is
pxw(zlw) = P(X =z|W =w) = pxw(x,w)/pw(w), for w such that py (w) > 0.

Note this is a pmf for X.

(ii) For Xi,...,X,, an n-sample from a discrete distribution px, and W some function of Xj,..., X, the
conditional pmf is P(z1,...,x,|W = w) = ([[i'2; px(x:))/pw (w) over all (x4, ..., zy,) giving the value W = w.
15.2 Examples

(i) X1,..., X, 1.id Bin(1,0), W =3" , X; ~ Bin(n,0) (LM. P.399)

px(a) = 6°(1—0)'=" and pyw(w) = (" )6 (1—6)"", and Yy o = w.

P(@r,own | W=w) = ([]6"(1—06)")/( Z Jora—ory = 1/( Z )
=1

Given the total number of successes, the probability of any particular sequence is (1 / (number of ways)) of

arranging w successes in n trials (and does not depend on 6).
(i) X1, ..., X iid. Po(8), W =", X; ~ Po(nh)

px(z) = e7%0%/2! and py(w) = e*”(’(nﬁzw/w!, and >0y x; = w. §
Pz, ..,xn | W=w) = (H 0% J2)) /(e 0V Jw!) = (w!/ Hmz')(l/n)w
i=1 i=1

Again we find the conditional probability dows not depend on 6.

Note, if n = 2, this conditional pdf is Bin(w, %)

15.3 The conditional pdf: continuous case (LM 3.11)

(i) We define the conditional pdf fxw (z|w) = fxw(z,w)/fw(w), for w such that fy (w) > 0.
Note, for each w, fxw(zw) is a pdf for X.

(ii) This definition is motivated by
Pr<X<z+drnNw<Ww+ow)  fxw(r,w) dz dw

Plw < W < w+ dw) - fw (w) ow

(iii) For X1, ..., X;, an n-sample from a continuous pdf fx, and W some function of X3, ..., X,, the conditional

Pe<X<z+dr|w<W<w+ow) =

pdfis f(x1,....,zn | W =w) = [[iv; fx(z:)/fw(w) over all (x1, ..., z,) giving the value W = w.
15.4 Examples
(i) X1,.., X, 1id. EN), W = Y, Xi ~ G(n, ).
fx(@A) = de ™ onx>0; fir(w;\) = (AN/T'(n)).w" e ™™ on w >0, and w = 7 ;.
The conditional pdf of the sample, given W = w, is
L odexp(-da) _ T(n)
(A" /T(n)).wn—le—Aw wn!
Again, we have managed to choose a W such that the conditional pdf does not depend on the parameter.
(i) X1,..., X, iid. U(0,0), W = max;—1__,X;
fx(z;0) = 1/0on 0 <2 <0; fiy(w;0) = nw™ /6" on 0 < w < 0, and w = max; ;.
The conditional pdf of the sample, given W = w, is

flxy, ez, | W=w) =

iz (1/6) 1

fx1, .y | W=w) = sy

Again, we have managed to choose a W such that the conditional pdf does not depend on the parameter.



16. Sufficient statistics and the factorization criterion LM 5.6
16.1 Definition LM P.407.
(i) A statistic T'(X1, ..., X)) is sufficient for inferences about parameter 6 is the conditional pmf/pdf of the

sample, given the value of T" does not depend on 6.

(ii) Examples: 15.2 (i),(ii) and 15.4 (i),(ii): in each case we found a W (3, X; or max;(X;)) for which
f(z1,...,2,|W = w) did not depend on the parameter 6. In each case the statistic W is sufficient for 6.

(iii) The idea is that the sufficient statistic contains all the information about 6 that there is in the entire
sample. If you know the value of the sufficient statistic, you will not gain anything more by knowing (x1, ..., ).

(iv) Example: 15.2 (i) is the clearest. If you know the number of sucesses W = 3" X; ~ Bin(n, ), you know

as much about 6 as if you know the complete sequence of successes and failures (1 and 0).
16.2 Factorizing the Likelihood LM P.407, Definition 4.6.1.
(i) Note, by definition, f(z1,...,z,|T =1t) = f(x1,...,2,)/fr(t), so in likelihood terms we have

L,(0) = f(x1,...,2n;0) = f(x1,...,xn|T =1t)fr(t;0)
0,(0) = log f(x1,....xp|T =1t) + log fr(t;0)

Conversely, if the likelihood factorizes in this way, with the first term not depending on 6 then T is sufficient.

(ii) Note the MLE will depend only on T'; the conditional term is just a “constant” (multiplicative in the

likelihood, additive in the log-likelihood). It does not affect the value of 6 that maximizes L(6) or ¢, (0).

(iii) Recall it is relative values of the likelihood that matter; we compare the likelihoods for different #-values

for the same data. Note L, (0)/L,(0*) = fr(t;0)/fr(t;0*) also depends only on the value t of the sufficient

statistic T, and not otherwise on z1, ..., Z,.

16.3 Fundamental principle: all inferences should be based only on sufficient statistics. Why?

(i) They contain “all the information”

(ii) They determine the (log-)likelihood function, up to a constant factor.

(iii) Rao-Blackwell Theorem: Approximate Statement only(LM P.405): If an estimator W is not a

function only of the sufficient statistic, and T is sufficient, then there is a function of T" which, for every 0,
(a) has the same expectation as W, and (b) has smaller mean square error than W.

(Subject to some conditions, there is one and only one such function of 7T'.)

(iv) Example: Xj,....,X,, ii.d. U(0,0), T = max; X; is sufficient (see 15.4 (ii)). MoM estimator 2X,, is

unbiased, but not a function of 7. Estimator (n + 1)T'/n is also unbiased and has smaller variance or mse.

16.4 A (second) factorization criterion (LM P403)

(i) It would be a pain to have to identify 7', and then check the conditional pdf f(z1,...,z,|T = t) to make

sure it does not depend on #. Fortunately, we don’t have to.

(ii) Theorem: T = h(Xjy, ..., X,,) is sufficient for 0 if and only if L,(0) = g(h(x1,...,25);0).b(x1, ..., zp).

Proof: If T is sufficient, this holds with g(h;0) = fr(h;0) and b(z1,...,x,) = f(21,....,2a|T = t).

Conversely, if we have the factorization, it can be shown that g(h;0) o fr(h; @), where the factor does not

depend on 6, so then we have previous factorization and T is sufficient (LM P.404).

(iii) Conclusion: To find sufficient statistics:

(a) write down the (log)-likelihood; (b) Find what functions of (x1, ..., x,) are inextricably mized up with 0;

(c) These are the sufficient statistics!

Note: as n case of U(0,0) the “mixed up with” may come through the range on the r.v.s.



