
12. Joint densities and independence (Friday Feb 5) LM 3.7

12.1 Joint probability mass functions (LM P.203-5)

If X and Y are discrete random variables the joint pmf is fX,Y (x, y) = P (X = x, y = y) for x ∈ X , y ∈ Y.

Then the marginal pmfs of X and of Y are

fX(x) = P (X = x) =
∑
y∈Y

fX,Y (x, y), and fY (y) =
∑
x∈X

fX,Y (x, y).

Note fX(x) > 0 for x ∈ X , and fY (y) > 0 for y ∈ Y, but fX,Y (x, y) can be 0 for some x ∈ X , y ∈ Y.

12.2 Independence of two discrete random variables

X and Y are independent if for any subsets A and B of ℜ, P (X ∈ A ∩ Y ∈ B) = P (X ∈ A) × P (Y ∈ B).

This is equivalent to fX,Y (x, y) = P (X = x, Y = y) = P (X = x).P (Y = y) = fX(x)fY (y).

Clearly this is necessary: take A = {x} and B = {y}.

Conversely, if fX,Y (x, y) = fX(x)fY (y), then for any A, B:

P (X ∈ A, Y ∈ B) =
∑
x∈A

∑
y∈B

fX,Y (x, y) =
∑
x∈A

∑
y∈B

fX(x)fY (y)

=
∑
x∈A

fX(x)
∑
y∈B

fY (y) = P (X ∈ A) P (Y ∈ B)

Note this must hold for all x, y. Thus the ranges of the r.v.s cannot depend on each other.

12.3 Joint and marginal (cumulative) distribution functions

For two random variables X and Y the joint cdf is FX,Y (a, b) = P (X ≤ a, Y ≤ b), −∞ < a, b < ∞.

Note that the marginal cdfs of X and of Y are given by

FX(a) = P (X ≤ a) = P (X ≤ a, Y < ∞) = P ( lim
b→∞

{w; X ≤ a, Y ≤ b})

= lim
b→∞

P (X ≤ a, Y ≤ b) = lim
b→∞

FX,Y (a, b) ≡ FX,Y (a,∞)

FY (b) = P (Y ≤ b) = lim
a→∞

FX,Y (a, b) ≡ FX,Y (∞, b)

Just as in 1 dimension, we can get all other probabilities from FX,Y . For example :

P (a1 < X ≤ a2, b1 < Y ≤ b2) = FX,Y (a2, b2) − FX,Y (a1, b2) − FX,Y (a2, b1) + FX,Y (a1, b1)

12.4 Joint and marginal probability density functions

(i) Random variables X and Y are jointly continuous if there is a function fX,Y (x, y) defined for all real x

and y, such that for every (?) set C in ℜ2, P ((X, Y ) ∈ C) =
∫ ∫

(x,y)∈C fX,Y (x, y) dx dy.

Then fX,Y (x, y) is the joint pdf of X and Y .

(ii)
FX,Y (a, b) = P (X ∈ (−∞, a], Y ∈ (−∞, b]) =

∫ b

y=−∞

∫ a

x=−∞

fX,Y (x, y) dx dy

so fX,Y (a, b) =
∂2

∂a ∂b
FX,Y (a, b)

(iii)
P (X ∈ A) = P (X ∈ A, Y ∈ (−∞,∞]) =

∫
X∈A

∫ ∞

y=−∞

fX,Y (x, y) dx dy =

∫
X∈A

fX(x) dx

where fX(x) =

∫ ∞

−∞

fX,Y (x, y)dy

So fX(x) is marginal pdf of X and similarly marginal pdf of Y is fY (y) =
∫ ∞

−∞
fX,Y (x, y)dx
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13. Likelihood: the pdf of an n-sample (LM 3.7, 5.2)

13.1 Independence of two r.vs: continuous case (LM 3.7)

With A = (−∞, x) and B = (−∞, y) we see FX,Y (x, y) = FX(x)FY (y).

As with the 1-dimensional case, this is also sufficient:

X and Y are independent if and only if FX,Y (x, y) = FX(x)FY (y) for all x, y.

Differentiating, we see this means fX,Y (x, y) = fX(x)fY (y), and conversely integrating we see these are

equivalent. Note again it must hold for all x, y: the ranges of the r.vs cannot depend on each other.

X and Y are independent if and only if fX,Y = fX(x)fY (y) for all x, y.

Also, if fX,Y (x, y) = g1(x)g2(y) for all x, y, then X and Y are independent, and fX(x) ∝ g1(x), fY (y) ∝ g2(y).

13.2 The pdf (discrete or continuous) of an n-sample

All the above extends from 2 random variables to any number.

Suppose we have an n-sample from the density (discrete or continuous) f(x; θ).

That is, X1, ..., Xn are i.i.d and each Xi has pdf f(x; θ).

Then the joint density of (X1, ..., Xn) is

f(X1,...,Xn)(x1, x2, ...., xn) =
n∏

i=1

f(xi ; θ)

For example: X1, ..., Xn ∼ E(λ); f(X1,...,Xn)(x1, x2, ...., xn) =
∏n

i=1 λe−λxi = λn exp(−λ
∑n

i=1 xi).

13.3 The likelihood (LM 5.2)

Recall we have data random variables which we model as having some probabilities which depend on θ.

Recall, our goal is to make inferences about θ.

The pdf of the data outcomes is the only “connection” between our data and θ.

The idea of likelihood is to use the probabilities of data under model directly.

Definition: If we have data y which is the outcome of data random variable(s) Y , then the likelihood function

is L(θ) = fY (y ; θ)

The likelihood function is simply the probability (density) of the data, considered as a function of θ. The idea

is that values of θ which give high probability to the data values we observe are more likely – they provide

better explanations of the data.

Note the pdf considers each θ, and the relative probabilities of different data outcomes y.

The likliehood function compares different values of θ as explanations of specific observed data y.

13.4 The likelihood and log-likelihood based on an n-sample (LM 5.2)

Suppose Y1, ..., Yn are the data random variables for an n-sample from f(y; θ), and that the ourcome of Yi is

yi (i = 1, ..., n). Then

Ln(θ) = fY1,...,Yn
(y1, ..., yn; θ) =

n∏
i=1

f(yi ; θ)

Products are messy: sums are neater. So instead of the likelihood we often consider the log-likelihood

ℓn(θ) = loge Ln(θ) =
n∑

i=1

loge f(yi; θ)

For example: E(λ): Ln(λ) = λn exp(−λ
∑

i xi) and ℓn(λ) = n log(λ) − λ
∑

i xi.
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