10. Gamma distributions: LM 4.6
10.1 The Gamma function I'(a). (LM P.329)
(i) Definition: I'(a) = [ e Yy~ tdy
(ii) Integrating by parts: .
M) = [y T+ [" Vo= 1y 2y

= (a—1) /OOO e Yyt 2dy = (a— DI —1)

Note I'(n) = (n — 1)I'(n —2) = .... = (n — 1)IT(1) = (n — 1)! since I'(1) = [;° exp(—y)dy = 1.

10.2 The Gamma density G(a, ). a >0, A > 0. (LM P. 329)
(i) Definition: fy (y) = A*y* Lexp(—Ay)/T'(a) for 0 < y < oo and 0 otherwise.
Note 1: [;° fy(y)dy = 1. (Substitute v = Ay).
Note 2: if Y ~ G(a, ), \Y ~ G(a,1): 1/) is a scale parameter.
(i) oo o
BYY) = [To hwdy = (D) [T xete exn(-y) dy
L[ B I'(k+ )
_ 1 k41, k+a—1 _ _
= (I(«) /0 A v exp(—v) dv/\ NT(a)
(iii) The mean and variance of a Gamma random variable (LM. P.330) (or use Mgf below)
E(Y) = T(1+a)/A\I(a) = a/), E(Y?) = T2+a)/)T(a) = ala+1)/)2
Hence var(Y) = E(Y?) — (E(Y))? = a(a+1)/A? — (a/N)? = a/)\2
10.3 The Mgf of G(a, \)
(i) N
E(e™) = ()\Q/F(OZ))/ e lexp(—-(A—t)z) dz = (A/(A—1))
0

(ii) From 9.3, the Mgf of an exponential £(A) r.v. is A/(A — ).

Suppose Y7, ..., Y, are i.i.d. exponential E(\).

Then the Mgf of "7 | Vi is [[lny A/(A—1t) = (A (A—=1t)".

But this is the Mgf of a G(n, A) random variable.

(iii) Hence, by uniqueness of Mgf’s, the distribution of > 1 ; ¥; is G(n, A)— summing independent exponential
r.v.s with the same A gives a Gamma r.v..

10.4 Summing and scaling Gamma distributions. LM P.330-332

(i) X1 ~G(aq,N), X2 ~ G(ag,\), X; and Xo independent.

Then Mgf of X7 + Xo is (A/(A —£))*.(A/(A—1))*2 = (A (A —1))* T2 which is Mgf of G(ag + asg, \).
Hence, by uniqueness of Mgf, X7 + Xo ~ G(ag + a2, \).

Note this works for Gamma r.v.s with different al, ag, ..., but they must have the same A.

(ii) We know that if X ~ &£(A) then kX ~ E(A/E).

The same works for Gamma r.v.s; we can use the Mgf to show this also: If X ~ G(a, )
E(exp((kX)t)) = E(exp((kt)X)) = Mx(kt) = (A/(A=kt))* = ((A/k)/((ME) = 1))

So, by uniqueness of Mgf, kX ~ G(a, \/k)



11. Chi-squared distributions: Sums of squares of independent Normal r.vs; LM P474
11.1 Definition of x2, distribution
If Z1,....., Zm, are independent standard Normal, N(0,1), random variables, then Y = Y7, Z2? has a chi-

squared distribution, x2,, with m degrees of freedom.

11.2 The Mgf of a x? distribution
(i) First consider the Mgf of Z2, where Z ~ N(0,1); a x? distribution.

mp(t) = Elexp(tz?) = [e7fs(2) dz
- (1/V2r) exp(—22/2 4 t2?) dz
( )

88

1/V27) exp(—22(1 — 2t)/2) dz

/
/

8

= (1—2t)""2 substituting w = V1 — 2tz

(i) So the Mgf of x? is (1 —2t)~Y/2 = ((1/2)/((1/2) —t))/2.
But this is the Mgf of a G(1/2, 1/2), so by uniqueness of Mgf a x? distribution is a G(1/2, 1/2) distribution.

11.3 The relationship of exponentials, chi-squared and Gamma dsns

(i) So now a X2, r.v. is Z? + Z3 + ... + Z2,, where Z; are independent N (0, 1).

So now the x2, distribution has Mgf ((1 — 2t)~1/2)™ = (1 —2t)"™/2 = ((1/2)/((1/2) — t))"™/2.

But this is the Mgf of a G(m/2, 1/2), so by uniqueness of Mgf a x2, distribution is a G(m/2, 1/2) distribution.
(ii) A x3 distribution is has Mgf (1 — 2¢)~! — (1/2)/((1/2) —t).

But this is Mgf of exponential £(1/2) or Gamma G(1, 1/2).

So, by uniqueness of Mgf, a x3 distribution is G(1,1/2) = £(1/2).

Or,if X ~ N(0,1) and Y ~ N(0,1), with X and Y independent, then (X2 +Y?) ~ &£(1/2).

11.4 Y (X?) for X; i.i.d N(0,0?)

(i) Normals scale, exponentials scale, Gammas scale, and so do chi-squareds.

(i) Z; = X;/o ~ N(0,1). S, Z2 ~ X2, 0or Y X2 ~ o022,

(111) o2, = o*G(m/2,1/2) =G(m/2,1/(20?)).

(iv) From 10.2, If W ~ G(m/2,1/(20?)) then W has expectation (m/2)/(1/20%) = mo? and variance
(m/2)/(1/202)? = 2mo*.

(v) Recall T = (1/m) 1", X2 was our MoM estimator of o2 (see 4.3).

Sonow T = W/m, E(T) = E(W)/m = o2, so T is an unbiased estimator of o — which we knew already.
Also, (this is new), var(T) = var(W)/m? = 20%/n; we now have a formula for the variance (or mse) of this
estimator.



