10. Gamma distributions: LM 4.6

10.1 The Gamma function $\Gamma(\alpha)$. (LM P.329)

(i) Definition: $\Gamma(\alpha) = \int_0^\infty e^{-y} y^{\alpha-1} dy$

(ii) Integrating by parts:

$$\Gamma(\alpha) = [-e^{-y}y^{\alpha-1}]_0^{\infty} + \int_0^{\infty} e^{-y}(\alpha - 1)y^{\alpha-2}dy$$
$$= (\alpha - 1)\int_0^{\infty} e^{-y}y^{\alpha-2}dy = (\alpha - 1)\Gamma(\alpha - 1)$$

Note $\Gamma(n) = (n-1)\Gamma(n-2) = \dots = (n-1)!\Gamma(1) = (n-1)!$ since $\Gamma(1) = \int_0^\infty \exp(-y) dy = 1$.

10.2 The Gamma density $G(\alpha, \lambda)$. $\alpha > 0$, $\lambda > 0$. (LM P. 329)

(i) Definition: $f_Y(y) = \lambda^{\alpha} y^{\alpha-1} \exp(-\lambda y) / \Gamma(\alpha)$ for $0 < y < \infty$ and 0 otherwise.

Note 1: $\int_0^\infty f_Y(y)dy = 1$. (Substitute $v = \lambda y$).

Note 2: if $Y \sim G(\alpha, \lambda)$, $\lambda Y \sim G(\alpha, 1)$: $1/\lambda$ is a scale parameter.

(ii)
$$E(Y^k) = \int_0^\infty y^k f_Y(y) dy = (\Gamma(\alpha))^{-1} \int_0^\infty \lambda^\alpha y^{k+\alpha-1} \exp(-\lambda y) dy$$

$$= (\Gamma(\alpha))^{-1} \int_0^\infty \lambda^{-k+1} v^{k+\alpha-1} \exp(-v) dv / \lambda = \frac{\Gamma(k+\alpha)}{\lambda^k \Gamma(\alpha)}$$

(iii) The mean and variance of a Gamma random variable (LM. P.330) (or use Mgf below)

$$\mathrm{E}(Y) = \Gamma(1+\alpha)/\lambda\Gamma(\alpha) = \alpha/\lambda, \quad \mathrm{E}(Y^2) = \Gamma(2+\alpha)/\lambda^2\Gamma(\alpha) = \alpha(\alpha+1)/\lambda^2.$$
 Hence $\mathrm{var}(Y) = \mathrm{E}(Y^2) - (\mathrm{E}(Y))^2 = \alpha(\alpha+1)/\lambda^2 - (\alpha/\lambda)^2 = \alpha/\lambda^2.$

10.3 The Mgf of $G(\alpha, \lambda)$

(i)

$$E(e^{tX}) = (\lambda^{\alpha}/\Gamma(\alpha)) \int_0^\infty x^{\alpha-1} \exp(-(\lambda - t)x) dx = (\lambda/(\lambda - t))^{\alpha}$$

(ii) From 9.3, the Mgf of an exponential $\mathcal{E}(\lambda)$ r.v. is $\lambda/(\lambda-t)$.

Suppose $Y_1, ..., Y_n$ are i.i.d. exponential $\mathcal{E}(\lambda)$.

Then the Mgf of $\sum_{i=1}^{n} Y_i$ is $\prod_{i=1}^{n} \lambda/(\lambda-t) = (\lambda/(\lambda-t))^n$.

But this is the Mgf of a $G(n,\lambda)$ random variable.

(iii) Hence, by uniqueness of Mgf's, the distribution of $\sum_{i=1}^{n} Y_i$ is $G(n, \lambda)$ – summing independent exponential r.v.s with the same λ gives a Gamma r.v..

10.4 Summing and scaling Gamma distributions. LM P.330-332

(i) $X_1 \sim G(\alpha_1, \lambda), X_2 \sim G(\alpha_2, \lambda), X_1 \text{ and } X_2 \text{ independent.}$

Then Mgf of $X_1 + X_2$ is $(\lambda/(\lambda - t))^{\alpha_1} \cdot (\lambda/(\lambda - t))^{\alpha_2} = (\lambda/(\lambda - t))^{\alpha_1 + \alpha_2}$, which is Mgf of $G(\alpha_1 + \alpha_2, \lambda)$.

Hence, by uniqueness of Mgf, $X_1 + X_2 \sim G(\alpha_1 + \alpha_2, \lambda)$.

Note this works for Gamma r.v.s with different $\alpha 1, \alpha_2, ...$, but they must have the same λ .

(ii) We know that if $X \sim \mathcal{E}(\lambda)$ then $kX \sim \mathcal{E}(\lambda/k)$.

The same works for Gamma r.v.s; we can use the Mgf to show this also: If $X \sim G(\alpha, \lambda)$

$$E(\exp((kX)t)) = E(\exp((kt)X)) = M_X(kt) = (\lambda/(\lambda - kt))^{\alpha} = ((\lambda/k)/((\lambda/k) - t))^{\alpha}$$

1

So, by uniqueness of Mgf, $kX \sim G(\alpha, \lambda/k)$

11. Chi-squared distributions: Sums of squares of independent Normal r.vs; LM P474

11.1 Definition of χ_m^2 distribution

If $Z_1,, Z_m$ are independent standard Normal, N(0,1), random variables, then $Y = \sum_{i=1}^m Z_i^2$ has a chi-squared distribution, χ_m^2 , with m degrees of freedom.

11.2 The Mgf of a χ_1^2 distribution

(i) First consider the Mgf of Z^2 , where $Z \sim N(0,1)$; a χ_1^2 distribution.

$$m_{Z^2}(t) = \operatorname{E}(\exp(tZ^2)) = \int e^{tz^2} f_Z(z) dz$$

 $= \int_{-\infty}^{\infty} (1/\sqrt{2\pi}) \exp(-z^2/2 + tz^2) dz$
 $= \int_{-\infty}^{\infty} (1/\sqrt{2\pi}) \exp(-z^2(1-2t)/2) dz$
 $= (1-2t)^{-1/2} \text{ substituting } w = \sqrt{1-2t}z$

(ii) So the Mgf of χ_1^2 is $(1-2t)^{-1/2} = ((1/2)/((1/2)-t))^{1/2}$.

But this is the Mgf of a G(1/2, 1/2), so by uniqueness of Mgf a χ_1^2 distribution is a G(1/2, 1/2) distribution.

11.3 The relationship of exponentials, chi-squared and Gamma dsns

(i) So now a χ_m^2 r.v. is $Z_1^2 + Z_2^2 + ... + Z_m^2$, where Z_i are independent N(0,1).

So now the χ_m^2 distribution has Mgf $((1-2t)^{-1/2})^m = (1-2t)^{-m/2} = ((1/2)/((1/2)-t))^{m/2}$.

But this is the Mgf of a G(m/2, 1/2), so by uniqueness of Mgf a χ_m^2 distribution is a G(m/2, 1/2) distribution.

(ii) A χ^2_2 distribution is has Mgf $(1-2t)^{-1} - (1/2)/((1/2)-t)$.

But this is Mgf of exponential $\mathcal{E}(1/2)$ or Gamma G(1, 1/2).

So, by uniqueness of Mgf, a χ^2_2 distribution is $G(1,1/2) \equiv \mathcal{E}(1/2)$.

Or, if $X \sim N(0,1)$ and $Y \sim N(0,1)$, with X and Y independent, then $(X^2 + Y^2) \sim \mathcal{E}(1/2)$.

11.4 $\sum (X_i^2)$ for X_i i.i.d $N(0, \sigma^2)$

- (i) Normals scale, exponentials scale, Gammas scale, and so do chi-squareds.
- (ii) $Z_i \equiv X_i/\sigma \sim N(0,1)$. $\sum_{i=1}^m Z_i^2 \sim \chi_m^2$, or $\sum_{i=1}^m X_i^2 \sim \sigma^2 \chi_m^2$.
- (iii) $\sigma^2 \chi_m^2 \equiv \sigma^2 G(m/2, 1/2) \equiv G(m/2, 1/(2\sigma^2)).$
- (iv) From 10.2, If $W \sim G(m/2, 1/(2\sigma^2))$ then W has expectation $(m/2)/(1/2\sigma^2) = m\sigma^2$ and variance $(m/2)/(1/2\sigma^2)^2 = 2m\sigma^4$.
- (v) Recall $T = (1/m) \sum_{i=1}^{m} X_i^2$ was our MoM estimator of σ^2 (see 4.3).

So now T = W/m, $E(T) = E(W)/m = \sigma^2$, so T is an unbiased estimator of σ^2 – which we knew already. Also, (this is new), $var(T) = var(W)/m^2 = 2\sigma^4/n$; we now have a formula for the variance (or mse) of this estimator.