
4. Method of moments: LM 5.2, P. 357-8; Jan 13, 2010

4.1 One-parameter method of moments

Suppose we have an n-sample, Y1, ..., Yn from some probability distribution, indexed by a parameter θ.

Suppose E(Y ) = g(θ). Then to estimate θ we solve g(θ) = (1/n)
∑

i Yi ≡ Yn.

If g(θ) ∝ θ, we may get a reasonable estimator:

For example: Yi ∼ Po(θ); E(Yi) = θ; estimator is Yn.

or Y ∼ B(r, θ); E(Yi) = rθ; estimator is Yn/r = (1/nr)
∑

i Yi.

Even if g(θ) ∝ θ, we may not get a good estimator:

For example: Yi ∼ U(0, θ); E(Yi) = θ/2; estimator is 2Yn, but we know estimator based on maxi(Yi) is

“better”.

Another example: Yi ∼ E(λ); E(Yi) = 1/λ; estimator of λ is 1/Yn; we will come back to this one.

4.2 k-parameter method of moments

If we have k parameters, θ1,...., θk, and E(Y ) = g1(θ1, ..., θk), E(Y 2) = g2(θ1, ...., θk), ... E(Y k) = gk(θ1, ..., θk),

Then, given sample values y1, ..., yn, to get the estimates we solve

1

n

∑

i

yi = g1(θ1, ..., θk)

1

n

∑

i

y2

i = g2(θ1, ..., θk)

...
1

n

∑

i

yk
i = gk(θ1, ..., θk)

In general we use as many equations as we need to get solutions for our parameters.

4.3 An example where we need to use Y 2 for one parameter

Suppose Y1, ..., Yn are an n-sample from N(0, σ2)

E(Yi) = 0; first equation is no use.

E(Y 2

i
) = σ2; estimator of σ2 is (1/n)

∑

i Y
2

i
.

But suppose we wanted an estimator of σ: solving the equation we would obtain MoM estimator
√

(1/n)
∑

i Y
2

i
.

Is this a “good” estimator? We will return to this one later.

4.4 An example with two parameters

Suppose Y1, ..., Yn are an n-sample from N(µ, σ2)

Then we have the two equations E(Yi) = µ; E(Y 2

i
) = µ2 + σ2 (why?)

Estimator of µ is Yn; this seems reasonable – estimate the population mean by the sample mean.

Estimator of σ2 is

(1/n)
∑

i

Y 2

i − (Yn)2 = (1/n)(
∑

i

Y 2

i − nYn

2
) = (1/n)(

∑

i

(Yi − Yn)2)

since
∑

i

(Yi − Yn)2 =
∑

i

Y 2

i − 2Yn

∑

i

Yi + nYn

2
=

∑

i

Y 2

i − 2.Yn.nYn + nYn

2

This might seem reasonable: mean squared deviation about the population mean, estimated by mean squared

deviation of the sample about the sample mean.

However, this is not the estimate of variance your calculator typically calculates.

We define S2 =
∑

i(Yi − Yn)2.
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5. Principles of Estimation: estimator T(X) ; Jan 15, 2010; part 1

Here we consider data random variables X, which may or may nor be an n-sample X1, ..., Xn. The estimator

T is some function of the data random variables.

5.1 Unbiasedness

 

 

Bias: bT (θ) = Eθ(T ) − θ

Estimator is unbiased if bT (θ) = 0 for all θ

For example: X ∼ Bin(n, θ): E(X/n) = θ.

In this example, the estimator X/n is unbiased for θ.

Other things being equal, we would like to have unbiased estimators.

5.2 Variance

 

 

Unbiased estimators with small variance have higher probability of

providing estimates close to the true value.

varθ(T ) = Eθ(T − E(T ))2 = Eθ(T − θ)2 if Eθ(T ) = θ.

Among unbiased estimators, we prefer those with small variance.

5.3 Mean square error

 

 

There is a trade-off between bias and variance: an estimator with

non-zero bias but small variance may have smaller mean square error.

mseθ(T ) = Eθ(T − θ)2 = Eθ((T − Eθ(T )) + (Eθ(T ) − θ))2)

= varθ(T )+2.bT (θ).Eθ(T−Eθ(T )) + (bT (θ))2 = varθ(T )+(bT (θ))2

5.4 Mean square error or mean absolute error?

 

 

Squared error gives high weight to large probabilities: For example,

a 1 in 106 probability of an error of 106 gives a contribution 10−6 ×
(106)2 = 106 contribution to the mse.

We might be more interested in mean absolute error:

that is Eθ(|T − θ|).
With this measure, a 1 in 106 probability of an error of 106 gives a

contribution 10−6 × (106) = 1 contribution to the mean absolute

error.
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6. Examples of estimators and their properties; Jan 15, 2010; part 2

6.1 Sample mean is unbiased estimator of population mean

(i) If Y1, ..., Yn are i.i.d ∼ Po(θ), MoM estimator of θ is Yn =
∑

n

i=1
Yi/n, and is unbiased for θ.

(ii) If Y1, ..., Yn are i.i.d ∼ Bin(r, θ), MoM estimator of θ is
∑

n

i=1
Yi/(rn), and is unbiased for θ.

(iii) If Y1, ..., Yn are i.i.d ∼ N(µ, σ2), MoM estimator of µ is Yn =
∑

n

i=1
Yi/n, and is unbiased for µ, regardless

of the value of σ2, and of whether or not we are also estimating σ2.

6.2 Estimation of σ2 and of σ

Consider again Y1, ..., Yn i.i.d ∼ N(0, σ2), (see 4.3). The MoM estimator of σ2 is T = (1/n)
∑

n

i=1
Y 2

i
.

The estimator T is unbiased for σ2, since E(Y 2

i
) = σ2. Bias bT (σ2) = E(T ) − σ2 = 0.

The MoM estimator of σ is
√

T .

We know for any (non-degenerate) Y ; 0 < var(Y ) = E(Y 2) − (E(Y ))2, or E(Y 2) > (E(Y ))2.

So σ2 = E(T ) > (E(
√

T ))2; i.e. E(
√

T ) < σ.

The MoM estimator of σ is biased; the bias b√
T
(σ) = E(

√
T ) − σ < 0.

6.3 Estimation of θ from an exponential sample

Suppose Y1, ..., Yn are i.i.d ∼ E(θ): fY (y) = θ exp(−θy) on 0 ≤ y < ∞ (0 otherwise).

E(Y ) = 1/θ; so MoM estimator of θ is T = 1/Yn.

We know E(Yn) = 1/θ; what can we say about E(T ) = E(1/Yn) ??

When V and W are independent, E(V W ) = E(V ).E(W ).

If V and W tends to be large/small together, E(V W ) > E(V ).E(W ).

If V tends to be large when W is small, and vice versa, E(V W ) < E(V ).E(W ).

Now 1/Yn tends to be large when Yn is small, and vice versa.

Thus 1 = E(Yn.(1/Yn)) < E(Yn).E(T ) or E(T ) > 1/E(Yn) = 1/(1/θ) = θ.

That is MoM estimator T is positively biased: bT (θ) = E(T ) − θ > 0.

6.4 Estimation of σ2 when µ is unknown

∑

i

(Yi − µ)2 =
∑

i

((Yi − Yn) + (Yn − µ))2

= S2 + (Yn − µ)
∑

i

(Yi − Yn) + n.(Yn − µ)2 = S2 + n(Yn − µ)2

Now E((Yi −µ)2) = σ2 (why?) and E((Yn −µ)2) = σ2/n (why?) so E(S2) = n.σ2 −n.σ2/n = (n− 1)σ2.

For an unbiased estimator, we would use S2/(n − 1) (like most calculators), not the MoM S2/n.

6.5 Sample from U(0, θ)

var(Yi) = θ2/12; variance of the MoM estimator is θ2/(3n). It is unbiased.

What is the variance of W = max(Yi)? fW (w) = nwn−1/θn on 0 < w < θ.

E(W ) = nθ/(n+1). E(W 2) = nθ2/(n+2). So var(W ) = nθ2(1/(n+2)−n/(n+1)2) = nθ2/(n+2)(n+1)2.

Or var((n + 1)W/n) = θ2/n(n + 2). This estimator is unbiased, and, if n > 1, has smaller variance than the

MoM estimator.

Consider the estimator KW (n + 1)/n; bias is (K − 1)θ; variance is K2θ2/n(n + 2).

MSE is θ2(K2/n(n + 2) + (K − 1)2) minimized by K = n(n + 2)/(n + 1)2.

That is, estimator (n + 2)W/(n + 1) has smallest MSE.

3


