
1. Introduction to Statistics; Jan 4, 2010 LM Ch1, and 5.1

1.1: Some info about the class

• The class web site is www.stat.washington.edu/thompson/S341 10/

For information on exams, homeworks, grading, office-hours, ... see the web page.

• The most useful web page is the schedule www.stat.washington.edu/thompson/S341 10/schedule.shtml.

It contains links to homeworks, class notes, etc. etc.

• The class is a continuation of Stat340; there is a link to Stat 340 information on the web page.

• The book is Larsen & Marx, 4th ed. (LM).

It is assumed you have covered the equivalent of LM 2.1-2.7, 3.1-3.6, 4.1-4.5.

• Homeworks due at start of class on Weds; starting Jan 13; see the web page.

The first homeworks will review probability from 340/394/395.

1.2: What is Statistics?

• Statistics is the science of analysis of data

Science: has theory, methods, principles but no axiomatic basis.

Statistics uses Probability (and its axiomatic basis) as a framework.

Data: No physical laws; data can be anything!

Data derive from experiments, observational studies, sample surveys, ... Data relate to any quantitative

or qualitative fact for which we want to understand the basis – in science, society, business, ....

Analysis: Find a unifying structure for data.

Assume a model (a probability distribution) for the data; Find out about the model from the data.

• More limited definition: Devise procedures for extracting information about the model from the data.

1.3 Probability models, parameters and statistical inference

Example: toss a coin for which P (head) = θ n times, observe k heads.

Model: Number of heads is Bin(n, θ). Data comes from the Binomial family, with index n (fixed), and

parameter θ: {B(n, θ); 0 ≤ θ ≤ 1}.

Statistics vs Probability: In Probability we make statements about the data (e.g. k heads), given some value

of θ. In Statistics we make inferences about θ given the data.

There are two basic modes of inference: In Stat341; we focus on estimation

Estimation: choose a sensible value for θ, – a function of the data. For example: k/n

Hypothesis testing: We make a statement about the parameter; for example: The coin in fair: θ = 1/2.

We ask: Do the data enable us to reject this hypothesis? (Stat342 will deal mainly with hypothesis testing.)

1.4 Where does the model come from?

(i) “Almost true” models: Number of heads is Bin(n, θ).

Number of blips on Geiger-counter in time t is Po(λt).

(ii) Idealized models: e.g. Number of road accidents modeled by Poisson.

Genetic models: assume random mating, no selection,....

(iii) Descriptive models: crop yields, heights, etc. assumed Normal

”density looks like” 1/π(1 + (x − θ)2)); Cauchy density.

There is a continuum in the “reality” of models: the three classes merge.

A model is a map; it is NOT Google Earth. Models (like maps) can be more or less detailed;

the important thing is that they are useful in understanding the data, and guiding studies/experiments.
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2. Estimators and estimates of parameters: Jan 8, 2010, Part 1

2.1: Estimates, Estimators, and statistics

Recall: a random variable is any real-valued function on the underlying probability space.

We call the random variables used to model the data, the data random variables.

Definition: A statistic is any (real-valued) function of the data random variables.

Definition: A statistic used to estimate a parameter is an estimator.

Definition: The value taken by the estimator in a particular instance is the estimate.

IMPORTANT:

Estimators, statistics, and data random variables are random variables.

Estimates, values of a statistics, and the data outcomes are real numbers.

2.2 Estimating parameters in models

Definition: A model is a family of (discrete or continuous) probability distributions indexed by some unknown

parameter θ.

Example: The family {Bin(n, θ); 0 ≤ θ ≤ 1}.

Note: θ may be a vector; there may be several parameters; e.g. {N(µ, σ2); −∞ < µ < ∞, 0 < σ2 < ∞}.

Data are assumed to be a realization of a random variable whose distribution is some member of the family.

Example: Number of heads k observed in n tosses of a coin is outcome of random variable X ∼ Bin(n, θ):

P (X = k) = (
n

k
)θk(1 − θ)n−k

Aim is to estimate θ by some function of the data; k.

The estimator is that same function of the random variable X.

Important: Always distinguish the estimate (a number) from the estimator (a random variable).

2.3 Example 1:

We wish to estimate the frequency θ of people of AB blood type in Seattle.

Data: We take a sample of n individuals and type their blood; we find that k of type AB.

Model: The number of type AB in sample size n has Bin(n, θ) distribution.

Assumptions:?? Random sample; not by family/ by region .... With/without replacement ?

A sensible estimate is k/n.

What do we know about the estimator X/n when X ∼ Bin(n, θ)?

E(X) = nθ, var(X) = nθ(1 − θ). So E(X/n) = θ, var(X/n) = θ(1 − θ)/n. (why?)

We can estimate θ by k/n, and can estimate the variance of the estimator X/n by k(n − k)/n3.

2.4 Example 2:

We wish to estimate the rate of accidents on some stretch of highway.

Data: In n months we observe a total of k accidents.

Model: Accidents occur as a Poisson Process rate λ per month.

That is, the number of accidents has a Po(λn) distribution (why?).

Assumptions: independent? constant rate? (day/night; weather??).

A sensible estimate is k/n.

What do we know about the estimator X/n when X ∼ Po(nλ)?

E(X) = nλ, var(X) = nλ. So E(X/n) = λ, var(X/n) = λ/n. (why?)

We can estimate λ by k/n, and can estimate the variance of the estimator X/n by (k/n)/n = k/n2.
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3. Estimators based on n-samples: Jan 8,2010, part 2.

3.1 Data random variables as an n-sample

Definition of n-sample: Often our data come as a set of n outcomes from repeated experiments/sampling.

Such data are said to be an n-sample.

Definition of i.i.d: The underlying data random variables X1, ...., Xn are independent and identically distributed

(i.i.d).

Definition of parameter space: Each of the data outcomes x1, ..., xn is an independent realization from the

family of distributions {fX(x; θ); θ ∈ Θ}, indexed by parameter θ in parameter space Θ.

Note: we will use fX(x; θ) to denote the pmf or pdf (discrete of continuous) of random variable X, indexed by

the parameter θ. X is a single data random variable; each of the i.i.d. Xi, i = 1, ..., n, has this same pmf/pdf

fX(x; θ).

3.2 An n-sample of Bernoulli or Binomial outcomes

In the example of 2.3 above; each of the outcomes is a Bernoulli outcome: Xi = 1 if person i has blood type

AB, Xi = 0 if not. P (Xi = 1) = θ. P (Xi = 0) = (1 − θ). Θ = {θ; 0 ≤ θ ≤ 1} = [0, 1].

The statistic T (X1, ..., Xn) =
∑

n

1
Xi is Binomial Bin(n, θ), and we would use the estimator T/n for θ just as

before.

We could also have an n-sample of Binomial outcomes. For example, each of n technicians samples and types

r people (in a very large population), and reports the number of bloodtype AB in his sample.

Then the i.i.d data random variables are Xi ∼ Bin(r, θ).

The statistic T (X1, ..., Xn) =
∑

n

1
Xi is Binomial Bin(rn, θ) (why?).

We would use the estimator T/rn for θ; why?. E(T/rn) = θ. var(T/rn) = θ/rn.

3.3 An n-sample of Poisson outcomes

In example 2.4 above, instead of just reporting the total accidents in n months, we could report the number

xi in each month i, i = 1, ..., n. The data are then an n-sample from the Po(λ) distribution; that is Xi are

i.i.d and Xi ∼ Po(λ), i = 1, ..., n. The parameter space is {λ; 0 ≤ λ < ∞} = [0,∞).

The statistic T (X1, ..., Xn) =
∑

n

1
Xi is Poisson Po(nλ), and we could use the estimator T/n for θ just as

before.

How do we know this would be the best thing to do?? –as yet, we don’t.

3.4 An n-sample from a Uniform distribution

Consider a n-sample from a Uniform distribution, U(0, θ).

We wish to estimate θ. The i.i.d data random variables Xi ∼ U(0, θ), i = 1, ..., n.

Now E(Xi) = θ/2 so E(
∑

n

i=1
Xi) = nθ/2, so we could use the estimator T = 2

∑
Xi/n.

However, this might not be sensible; suppose there is some Xi larger than the value of T ??

Maybe we should use an estimator based on W = max(Xi) (why?).

The CDF FX(x) = P (X ≤ x) = x/θ for 0 ≤ x ≤ θ.

So the CDF of W is FW (w) = P (W ≤ w) = P (all Xi are ≤ w) = (w/θ)n (using independence).

So the pdf is fW (w) = nwn−1/θn on 0 < w < θ and 0 otherwise.

So now E(W ) =
∫

θ

0
nwn/θn dw = (n/θn)[wn/(n + 1)]θ

0
= nθ/(n + 1).

Thus perhaps the estimator (n + 1)W/n = (n + 1)max(Xi)/n is better than T = 2
∑

n

i=1
Xi – we shall see

that it is!!
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