1. Introduction to Statistics; Jan 4, 2010 LM Ch1, and 5.1

1.1: Some info about the class

• The class web site is www.stat.washington.edu/thompson/S341_10/

For information on exams, homeworks, grading, office-hours, ... see the web page.

- The most useful web page is the schedule www.stat.washington.edu/thompson/S341_10/schedule.shtml. It contains links to homeworks, class notes, etc. etc.
- The class is a continuation of Stat340; there is a link to Stat 340 information on the web page.
- The book is Larsen & Marx, 4th ed. (LM).
 - It is assumed you have covered the equivalent of LM 2.1-2.7, 3.1-3.6, 4.1-4.5.
- Homeworks due at start of class on Weds; starting Jan 13; see the web page.
 - The first homeworks will review probability from 340/394/395.

1.2: What is Statistics?

• Statistics is the science of analysis of data

Science: has theory, methods, principles but no axiomatic basis.

Statistics uses Probability (and its axiomatic basis) as a framework.

Data: No physical laws; data can be anything!

Data derive from experiments, observational studies, sample surveys, ... Data relate to any quantitative or qualitative fact for which we want to understand the basis – in science, society, business,

Analysis: Find a unifying structure for data.

Assume a model (a probability distribution) for the data; Find out about the model from the data.

• More limited definition: Devise procedures for extracting information about the model from the data.

1.3 Probability models, parameters and statistical inference

Example: toss a coin for which $P(head) = \theta n$ times, observe k heads.

Model: Number of heads is $Bin(n, \theta)$. Data comes from the *Binomial family*, with index n (fixed), and parameter θ : $\{B(n, \theta); 0 \le \theta \le 1\}$.

Statistics vs Probability: In Probability we make statements about the data (e.g. k heads), given some value of θ . In Statistics we make inferences about θ given the data.

There are two basic modes of inference: In Stat341; we focus on estimation

Estimation: choose a sensible value for θ , – a function of the data. For example: k/n

Hypothesis testing: We make a statement about the parameter; for example: The coin in fair: $\theta = 1/2$.

We ask: Do the data enable us to reject this hypothesis? (Stat342 will deal mainly with hypothesis testing.)

1.4 Where does the model come from?

(i) "Almost true" models: Number of heads is $Bin(n, \theta)$.

Number of blips on Geiger-counter in time t is $\mathcal{P}o(\lambda t)$.

(ii) Idealized models: e.g. Number of road accidents modeled by Poisson.

Genetic models: assume random mating, no selection,....

(iii) Descriptive models: crop yields, heights, etc. assumed Normal

"density looks like" $1/\pi(1 + (x - \theta)^2))$; Cauchy density.

There is a continuum in the "reality" of models: the three classes merge.

A model is a map; it is NOT Google Earth. Models (like maps) can be more or less detailed; the important thing is that they are useful in understanding the data, and guiding studies/experiments.

2. Estimators and estimates of parameters: Jan 8, 2010, Part 1

2.1: Estimates, Estimators, and statistics

Recall: a random variable is any real-valued function on the underlying probability space.

We call the random variables used to model the data, the data random variables.

Definition: A *statistic* is any (real-valued) function of the data random variables.

Definition: A statistic used to estimate a parameter is an *estimator*.

Definition: The value taken by the estimator in a particular instance is the *estimate*.

IMPORTANT:

Estimators, statistics, and data random variables are random variables.

Estimates, values of a statistics, and the data outcomes are real numbers.

2.2 Estimating parameters in models

Definition: A *model* is a family of (discrete or continuous) probability distributions indexed by some unknown parameter θ .

Example: The family $\{Bin(n, \theta); 0 \le \theta \le 1\}$.

Note: θ may be a vector; there may be several parameters; e.g. $\{N(\mu, \sigma^2); -\infty < \mu < \infty, 0 < \sigma^2 < \infty\}$.

Data are assumed to be a realization of a random variable whose distribution is some member of the family.

Example: Number of heads k observed in n tosses of a coin is outcome of random variable $X \sim Bin(n, \theta)$:

$$P(X = k) = \binom{n}{k} \theta^k (1 - \theta)^{n-k}$$

Aim is to estimate θ by some function of the data; k.

The *estimator* is that same function of the random variable X.

Important: Always distinguish the *estimate* (a number) from the *estimator* (a random variable).

2.3 Example 1:

We wish to estimate the frequency θ of people of AB blood type in Seattle.

Data: We take a sample of n individuals and type their blood; we find that k of type AB.

Model: The number of type AB in sample size n has $Bin(n, \theta)$ distribution.

Assumptions:?? Random sample; not by family/ by region With/without replacement ?

A sensible *estimate* is k/n.

What do we know about the estimator X/n when $X \sim Bin(n, \theta)$?

 $E(X) = n\theta$, $var(X) = n\theta(1-\theta)$. So $E(X/n) = \theta$, $var(X/n) = \theta(1-\theta)/n$. (why?)

We can estimate θ by k/n, and can estimate the variance of the estimator X/n by $k(n-k)/n^3$.

2.4 Example 2:

We wish to estimate the rate of accidents on some stretch of highway.

Data: In n months we observe a total of k accidents.

Model: Accidents occur as a Poisson Process rate λ per month.

That is, the number of accidents has a $\mathcal{P}o(\lambda n)$ distribution (why?).

Assumptions: independent? constant rate? (day/night; weather??).

A sensible *estimate* is k/n.

What do we know about the estimator X/n when $X \sim \mathcal{P}o(n\lambda)$?

 $E(X) = n\lambda$, $var(X) = n\lambda$. So $E(X/n) = \lambda$, $var(X/n) = \lambda/n$. (why?)

We can estimate λ by k/n, and can estimate the variance of the estimator X/n by $(k/n)/n = k/n^2$.

3. Estimators based on *n*-samples: Jan 8,2010, part 2.

3.1 Data random variables as an n-sample

Definition of n-sample: Often our data come as a set of n outcomes from repeated experiments/sampling. Such data are said to be an n-sample.

Definition of *i.i.d*: The underlying data random variables $X_1, ..., X_n$ are *independent and identically distributed* (i.i.d).

Definition of *parameter space*: Each of the data outcomes $x_1, ..., x_n$ is an independent realization from the family of distributions $\{f_X(x;\theta); \theta \in \Theta\}$, indexed by parameter θ in *parameter space* Θ .

Note: we will use $f_X(x;\theta)$ to denote the pmf or pdf (discrete of continuous) of random variable X, indexed by the parameter θ . X is a single data random variable; each of the i.i.d. X_i , i = 1, ..., n, has this same pmf/pdf $f_X(x;\theta)$.

3.2 An n-sample of Bernoulli or Binomial outcomes

In the example of 2.3 above; each of the outcomes is a Bernoulli outcome: $X_i = 1$ if person *i* has blood type AB, $X_i = 0$ if not. $P(X_i = 1) = \theta$. $P(X_i = 0) = (1 - \theta)$. $\Theta = \{\theta; 0 \le \theta \le 1\} = [0, 1]$.

The statistic $T(X_1, ..., X_n) = \sum_{i=1}^{n} X_i$ is Binomial $Bin(n, \theta)$, and we would use the estimator T/n for θ just as before.

We could also have an n-sample of Binomial outcomes. For example, each of n technicians samples and types r people (in a very large population), and reports the number of bloodtype AB in his sample.

Then the i.i.d data random variables are $X_i \sim Bin(r, \theta)$.

The statistic $T(X_1, ..., X_n) = \sum_{i=1}^{n} X_i$ is Binomial $Bin(rn, \theta)$ (why?).

We would use the estimator T/rn for θ ; why?. $E(T/rn) = \theta$. $var(T/rn) = \theta/rn$.

3.3 An n-sample of Poisson outcomes

In example 2.4 above, instead of just reporting the total accidents in n months, we could report the number x_i in each month i, i = 1, ..., n. The data are then an n-sample from the $\mathcal{P}o(\lambda)$ distribution; that is X_i are i.i.d and $X_i \sim \mathcal{P}o(\lambda), i = 1, ..., n$. The parameter space is $\{\lambda; 0 \leq \lambda < \infty\} = [0, \infty)$.

The statistic $T(X_1, ..., X_n) = \sum_{i=1}^{n} X_i$ is Poisson $\mathcal{P}o(n\lambda)$, and we could use the estimator T/n for θ just as before.

How do we know this would be the best thing to do?? -as yet, we don't.

3.4 An n-sample from a Uniform distribution

Consider a *n*-sample from a Uniform distribution, $U(0, \theta)$.

We wish to estimate θ . The i.i.d data random variables $X_i \sim U(0, \theta), i = 1, ..., n$.

Now $E(X_i) = \theta/2$ so $E(\sum_{i=1}^n X_i) = n\theta/2$, so we could use the estimator $T = 2\sum X_i/n$.

However, this might not be sensible; suppose there is some X_i larger than the value of T??

Maybe we should use an estimator based on $W = \max(X_i)$ (why?).

The CDF $F_X(x) = P(X \le x) = x/\theta$ for $0 \le x \le \theta$.

So the CDF of W is $F_W(w) = P(W \le w) = P(\text{all } X_i \text{ are } \le w) = (w/\theta)^n$ (using independence).

So the pdf is $f_W(w) = nw^{n-1}/\theta^n$ on $0 < w < \theta$ and 0 otherwise.

So now $E(W) = \int_0^\theta n w^n / \theta^n \, dw = (n/\theta^n) [w^n / (n+1)]_0^\theta = n\theta / (n+1).$

Thus perhaps the estimator $(n+1)W/n = (n+1)\max(X_i)/n$ is better than $T = 2\sum_{i=1}^n X_i$ – we shall see that it is!!