1. Introduction to Statistics; Jan 4, 2010 LM Chl, and 5.1
1.1: Some info about the class
e The class web site is www.stat.washington.edu/thompson/S341_10/
For information on exams, homeworks, grading, office-hours, ... see the web page.
e The most useful web page is the schedule www.stat.washington.edu/thompson/S341_10/schedule.shtml.
It contains links to homeworks, class notes, etc. etc.
e The class is a continuation of Stat340; there is a link to Stat 340 information on the web page.
e The book is Larsen & Marx, 4th ed. (LM).
It is assumed you have covered the equivalent of LM 2.1-2.7, 3.1-3.6, 4.1-4.5.
e Homeworks due at start of class on Weds; starting Jan 13; see the web page.
The first homeworks will review probability from 340/394/395.
1.2: What is Statistics?
e Statistics is the science of analysis of data
Science: has theory, methods, principles but no axiomatic basis.
Statistics uses Probability (and its axiomatic basis) as a framework.
Data: No physical laws; data can be anything!
Data derive from experiments, observational studies, sample surveys, ... Data relate to any quantitative
or qualitative fact for which we want to understand the basis — in science, society, business, ....
Analysis: Find a unifying structure for data.
Assume a model (a probability distribution) for the data; Find out about the model from the data.
e More limited definition: Devise procedures for extracting information about the model from the data.
1.3 Probability models, parameters and statistical inference
Example: toss a coin for which P(head) = 6 n times, observe k heads.
Model: Number of heads is Bin(n,f). Data comes from the Binomial family, with index n (fixed), and
parameter 0: {B(n,0);0 <0 < 1}.
Statistics vs Probability: In Probability we make statements about the data (e.g. k heads), given some value
of 6. In Statistics we make inferences about 6 given the data.
There are two basic modes of inference: In Stat341; we focus on estimation
Estimation: choose a sensible value for 6, — a function of the data. For example: k/n
Hypothesis testing: We make a statement about the parameter; for example: The coin in fair: 6 = 1/2.
We ask: Do the data enable us to reject this hypothesis? (Stat342 will deal mainly with hypothesis testing.)
1.4 Where does the model come from?
(i) “Almost true” models: Number of heads is Bin(n,0).
Number of blips on Geiger-counter in time ¢ is Po(At).
(ii) Idealized models: e.g. Number of road accidents modeled by Poisson.
Genetic models: assume random mating, no selection,....
(iii) Descriptive models: crop yields, heights, etc. assumed Normal
”density looks like” 1/7(1 + (z — #)?)); Cauchy density.
There is a continuum in the “reality” of models: the three classes merge.
A model is a map; it is NOT Google Earth. Models (like maps) can be more or less detailed;

the important thing is that they are useful in understanding the data, and guiding studies/experiments.



2. Estimators and estimates of parameters: Jan 8, 2010, Part 1

2.1: Estimates, Estimators, and statistics

Recall: a random wvariable is any real-valued function on the underlying probability space.
We call the random variables used to model the data, the data random variables.
Definition: A statistic is any (real-valued) function of the data random variables.
Definition: A statistic used to estimate a parameter is an estimator.

Definition: The value taken by the estimator in a particular instance is the estimate.
IMPORTANT:

Estimators, statistics, and data random variables are random variables.

Estimates, values of a statistics, and the data outcomes are real numbers.

2.2 Estimating parameters in models

Definition: A model is a family of (discrete or continuous) probability distributions indexed by some unknown
parameter 6.

Example: The family {Bin(n,0); 0 <60 < 1}.

Note: # may be a vector; there may be several parameters; e.g. {N(u,0?); —oo < p < 00,0 < 02 < oo}.
Data are assumed to be a realization of a random variable whose distribution is some member of the family.

Example: Number of heads k observed in n tosses of a coin is outcome of random variable X ~ Bin(n,6):
P(x=k = ( Z )OR(1 — o)k

Aim is to estimate 6 by some function of the data; k.
The estimator is that same function of the random variable X.

Important: Always distinguish the estimate (a number) from the estimator (a random variable).

2.3 Example 1:
We wish to estimate the frequency 6 of people of AB blood type in Seattle.
Data: We take a sample of n individuals and type their blood; we find that k of type AB.
Model: The number of type AB in sample size n has Bin(n, ) distribution.
Assumptions:?? Random sample; not by family/ by region .... With/without replacement ?
A sensible estimate is k/n.
What do we know about the estimator X/n when X ~ Bin(n,0)?
E(X) =nb, var(X) =nb(1 — 0). So E(X/n) =0, var(X/n) = 0(1 — 0)/n. (why?)
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We can estimate 6 by k/n, and can estimate the variance of the estimator X/n by k(n — k)/n”.

2.4 Example 2:
We wish to estimate the rate of accidents on some stretch of highway:.
Data: In n months we observe a total of k£ accidents.
Model: Accidents occur as a Poisson Process rate A per month.
That is, the number of accidents has a Po(An) distribution (why?).
Assumptions: independent? constant rate? (day/night; weather??).
A sensible estimate is k/n.
What do we know about the estimator X/n when X ~ Po(n\)?
E(X) =nA, var(X) = nA. So E(X/n) = A, var(X/n) = A\/n. (why?)
We can estimate A by k/n, and can estimate the variance of the estimator X/n by (k/n)/n = k/n?.



3. Estimators based on n-samples: Jan 8,2010, part 2.

3.1 Data random variables as an n-sample

Definition of n-sample: Often our data come as a set of n outcomes from repeated experiments/sampling.
Such data are said to be an n-sample.

Definition of i.i.d: The underlying data random variables X1, ...., X, are independent and identically distributed
(i.i.d).

Definition of parameter space: Each of the data outcomes x1,...,x, is an independent realization from the
family of distributions {fx(x;6);0 € O}, indexed by parameter 0 in parameter space ©.

Note: we will use fx(z;60) to denote the pmf or pdf (discrete of continuous) of random variable X, indexed by
the parameter 6. X is a single data random variable; each of the i.i.d. X;, i = 1,...,n, has this same pmf/pdf
fx(z;0).

3.2 An n-sample of Bernoulli or Binomial outcomes

In the example of 2.3 above; each of the outcomes is a Bernoulli outcome: X; = 1 if person i has blood type
AB, X;=0ifnot. P(X;=1)=6. P(X;=0)=(1-0). ©={6;0<0<1} = [0,1].

The statistic T'(X1, ..., X)) = 21 X; is Binomial Bin(n,#), and we would use the estimator T'/n for 6 just as
before.

We could also have an n-sample of Binomial outcomes. For example, each of n technicians samples and types
r people (in a very large population), and reports the number of bloodtype AB in his sample.

Then the i.i.d data random variables are X; ~ Bin(r,0).

The statistic T(X1, ..., Xp) = > X; is Binomial Bin(rn,0) (why?).

We would use the estimator 7'/rn for 6; why?. E(T/rn) = 0. var(T/rn) = 0/rn.

3.3 An n-sample of Poisson outcomes

In example 2.4 above, instead of just reporting the total accidents in n months, we could report the number
x; in each month 4, i = 1,...,n. The data are then an n-sample from the Po(\) distribution; that is X; are
iidand X; ~ Po(N), i =1,...,n. The parameter space is {\;0 < A < oo} = [0,00).

The statistic T'(X7y, ..., X,) = Y1 X; is Poisson Po(nA), and we could use the estimator T'/n for 6 just as
before.

How do we know this would be the best thing to do?? —as yet, we don’t.

3.4 An n-sample from a Uniform distribution

Consider a n-sample from a Uniform distribution, U(0, 6).

We wish to estimate #. The i.i.d data random variables X; ~ U(0,0),i=1,...,n.

Now E(X;) = 6/2s0 E(>_"; X;) = n#/2, so we could use the estimator T = 23 X;/n.

However, this might not be sensible; suppose there is some X; larger than the value of T 77

Maybe we should use an estimator based on W = max(X;) (why?).

The CDF Fx(z) = P(X <xz)=x/0 for 0 <z < 4.

So the CDF of W is Fyy(w) = P(W <w) = P(all X; are <w) = (w/6)" (using independence).

So the pdfis fy(w) = nw™ /0" on 0 < w < § and 0 otherwise.

So now E(W) = foe nw" /0" dw = (n/0")[w"/(n+1)]§ = nb/(n+1).

Thus perhaps the estimator (n+ 1)W/n = (n + 1) max(X;)/n is better than ' = 2>°7" | X; — we shall see
that it is!!



