All the details of $X_1, ..., X_n \sim U(0, \theta)$.

Examples to be worked: Wed Jan 20, 2010

1. The MoM estimator

(a) If $X \sim U(0,\theta)$, show $E(X) = \theta/2$ and $var(X) = \theta^2/12$.

(b) If $X_1, ..., X_n$ are i.i.d. $U(0, \theta)$, show the MoM estimator of θ is $2\overline{X_n} = (2/n) \sum_{i=1}^n X_i$.

(c) Show the MoM estimator of θ is unbiased.

(d) Show the MoM estimator of θ has mean square error (mse) $\theta^2/3n$.

2. The maximum, W, of an *n*-sample of $U(0, \theta)$

- (a) Show the pdf of W is $f_W(w) = nw^{n-1}/\theta^n$ on $0 \le w \le \theta$, and 0 otherwise.
- (b) Show $E(W) = n\theta/(n+1)$, $E(W^2) = n\theta^2/(n+2)$, $var(W) = n\theta^2/(n+1)^2(n+2)$.
- (c) Show that W is a negatively biased estimator of θ , but that T = (n+1)W/n is an unbiased estimator.
- (d) Show that the mse of T as an estimator of θ is $\theta^2/n(n+2)$.

3. Other multiples of W or T

(a) Consider kT where k is a constant. Write down the mean and variance of kT.

(Note kT = k(n+1)W/n, but it is less messy to work with kT directly.)

- (b) Show that the bias of kT as an estimator of θ is $(k-1)\theta$.
- (c) Show that the mse of kT as an estimator of θ is

$$\theta^2(k^2/n(n+2) + (k-1)^2) = \theta^2(k^2(n+1)^2 - 2kn(n+2) + n(n+2))/n(n+2)$$

(d) Show that the mse is minimized w.r.t. k by $k = n(n+2)/(n+1)^2$.

That is, the estimator $n(n+2)T/(n+1)^2 = (n+2)W/(n+1)$ has smallest mse.

4. If you find it hard, at first, to work with general n, you may work with, for example, n = 5 (as in the homework).

4.1 Then the MoM estimator $(2/5)(X_1 + ... + X_5)$ has mean θ and variance (or mse) $\theta^2/15$.

- 4.2 (b) $E(W) = 5\theta/6$, $E(W^2) = 5\theta^2/7$, $var(W) = 5\theta^2/252$.
- 4.2 (c) (E(W) $\theta = ((5/6) 1)\theta = -\theta/6 < 0$.

T = 6W/5 is unbiased: $E(T) = (6/5) \cdot (5\theta/6) = \theta$, for any θ .

4.2 (d) T has variance (or mse) $(36/25).var(W) = \theta^2/35$.

4.3 (a) $\operatorname{var}(kT) = k\theta$ (T unbiased). $\operatorname{var}(kT) = k^2\theta^2/35$.

4.3 (b)
$$E(kT) - \theta = k\theta - \theta = (k-1)\theta$$
.

4.3 (c) mse of kT is $var(kT) + (b_{kT}(\theta))^2$ which reduces to $(\theta^2/35)(36k^2 - 70k + 70)$

4.3 (d) This is minimized by k = 35/36. So the estimator with smallest mse is 35T/36 or (35/36).(6W/5) = 7W/6.