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1 Cramér-Rao Lower Bound

Given two unbiased estimators for θ, θ̂1 and θ̂2, we know that the one with the
smaller variance is the better estimator. However, how do we know that there
isn’t yet another estimator θ̂3 that has an even smaller variance?

It turns out there is a theoretical limit below which the variance of any unbiased
estimator for θ cannot fall. This is called the Cramér Rao lower bound (CRLB).

1.1 Theorem 5.5.1

Let Y1, Y2, . . . , Yn be a random sample from the continuous pdf fY (y; θ), where
fY (y; θ) has continuous first-order and second-order partial derivatives at all
but a finite set of points. Suppose that the set of y’s for which fY (y; θ) 6= 0 does
not depend θ. Let θ̂ = h(Y1, Y2, . . . , Yn) be any unbiased estimator for θ. Then

Var(θ̂) ≥

{
nE

[(
∂ ln fY (Y ; θ)

∂θ

)2
]}−1

=
{
−nE

[(
∂2 ln fY (Y ; θ)

∂θ2

)]}−1

(A similar statement holds if the n observations come from a discrete pdf,
pX(k; θ)).

If the variance of an unbiased estimator θ̂ is equal to the CRLB, we know
that the estimator is optimal in the sense that there is no unbiased θ̂ that can
estimate θ with greater precision.

1.2 Example

LetX1, X2, . . . , Xn be n Bernoulli random variables, andX = X1+X2+· · ·+Xn.
Then, X ∼ Bin(n, p). Show that p̂ = X̄ achieves the Cramér-Rao lower bound.

Clearly, p̂ is unbiased and,

pXi(k; p) = pk(1− p)1−k k = 0, 1; 0 < p < 1
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ln pXi(Xi; p) = X ln p+ (1−Xi) ln(1− p)
∂ ln pXi(Xi; p)

∂p
=
Xi

p
− 1−Xi

1− p

∂2 ln pXi(Xi; p)
∂p2

= −Xi

p2
− 1−Xi

(1− p)2

Taking the expected value of the second derivative,

E
[
∂2 ln pXi(Xi; p)

∂p2

]
= −E[Xi]

p2
− 1− E[Xi]

(1− p)2

= − p

p2
− 1− p

(1− p)2

= −1
p
− 1

1− p

= −1− p+ p

p(1− p)
= − 1

p(1− p)

The CRLB is then,{
−nE

[
∂2 ln pX(X; p)

∂p2

]}−1

=
{
−n
(
− 1
p(1− p)

)}−1

=
p(1− p)

n

The variance of p̂ = X̄ = p(1−p)
n , hence p̂ achieves the CRLB.

What would be different if we had started with the Binomial distribution,

(pX(k; p) =
(
n
k

)
pk(1− p)n−k, k = 1, 2, . . .) instead of the Bernoulli?

2 Minimum Variance Unbiased Estimators

Unbiased estimators whose variance are equal to the CRLB are called Minimum
Variance Unbiased Estimators (MVUE).

2.1 Definition: Best Estimators

Let Θ denote the set of all estimators θ̂ = h(Y1, Y2, . . . , Yn) that are unbiased
for the parameter θ in the continuous pdf fY (y; θ). We say that θ̂∗ is a best (or
minimum-variance) estimator if θ̂∗ ∈ Θ and

Var(θ̂∗) ≤ Var(θ̂) for all θ̂ ∈ Θ

(Similar terminology applies to discrete distributions).

2



2.2 Definition: Efficient Estimators

Let Y1, Y2, . . . , Yn be a random sample of size n drawn from the continuous pdf
fY (y; θ). Let θ̂ = h(Y1, Y2, . . . , Yn) be an unbiased estimator for θ.

(a) The unbiased estimator θ̂ is said to be efficient if the variance of θ̂
equals the Cramér-Rao lower bound associated with fY (y; θ).

(b) The efficiency of an unbiased estimator θ̂ is the ratio of the Cramér-
Rao lower bound for fY (y; θ) to the variance of θ̂.

Note that best and efficient are not synonymous. There are situations where no
unbiased estimators achieve the Cramér-Rao lower bound. None of these will
be efficient but one (or more) could still be termed best.

2.3 Example

Refer to the previous example. Suppose that n = 10. Derive the efficiency of
the estimator p̃ = (X1 +X2)/2.

First note that p̃ is unbiased as E[(X1 +X2)/2] = (p+ p)/2 = p.

Var[(X1 +X2)/2] = 2p(1− p)/4 = p(1− p)/2

Efficiency =
p(1− p)

n
× 2
p(1− p)

=
2
n

=
1
5

3 MLEs and the Cramér-Rao Lower Bound

The maximum likelihood estimate is probably the most used estimation tech-
nique. As we have seen, maximum likelihoods estimates will always be functions
of the sufficient statistics. According to the Rao-Blackwell Theorem (Lecture
Notes 16.3 or LM page 405), unbiased estimators that are functions of the suf-
ficient statistics will have less variance than unbiased estimators that are not
functions of the sufficient statistics. In addition, MLEs are advantageous due
to the following asymptotic properties:

1. The maximum likelihood estimate is at least asymptotically un-
biased. It may be unbiased for any number of observations (for example
if the MLE is the sample mean).

2. The maximum likelihood estimate is consistent. For larger and
larger samples, its variance tends to 0 and its expectation tends to the
true value of the parameter θ.

3. The maximum likelihood estimate is asymptotically efficient. As
n → ∞, the ratio of the variance of a MLE to the Cramér-Rao lower
bound tends to 1. As a MLE is asymptotically unbiased, it is then also
asymptotically efficient.
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4. The maximum likelihood estimate is asymptotically normally
distributed. As n → ∞, the distribution of the MLE converges to a
normal distribution. Even for moderately large samples, the distribution
of MLE is approximately normal.

4 Practice Problems

1. Let Y1, Y2, . . . , Yn be a random sample of size n from a gamma pdf fY (y; θ) =
1

(r−1)!θr y
r−1e−y/θ, y > 0. Show that θ̂, the MLE of θ, is an efficient esti-

mator.

First lets find the MLE.

L(θ) =
∏ 1

(r − 1)!θr
yr−1
i e−yi/θ

=
(

1
(r − 1)!

)n 1
θrn

e−
1
θ

∑
yi
∏

yr−1
i

lnL(θ) = n ln
1

(r − 1)!
− rn ln θ − 1

θ

∑
yi + (r − 1)

∑
yi

d lnL(θ)
dθ

= −rn
θ

+
1
θ2

∑
yi = 0

θ̂ =
∑
yi

rn
=
Ȳ

r

Next, we need to show it is unbiased, and calculate its variance. Since it
is a gamma distribution, E[Y ] = rθ and Var[Y ] = rθ2.

E[θ̂] = E
[
Ȳ

r

]
=

rθ

r
= θ

Var[θ̂] = Var
[
Ȳ

r

]
=

rθ2

nr2
=
θ2

nr
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Now we need to calculate the CRLB.

d ln f
dθ

= −r
θ

+
Y

θ2

d2 ln f
dθ2

=
r

θ2
− 2Y
θ3

E
[
d2 ln f
dθ2

]
=

r

θ2
− 2rθ

θ3

=
r − 2r
θ2

= − r

θ2

CRLB =
θ2

nr

Thus the MLE achieves the CRLB and is an efficient estimator.

2. Let Y1, Y2, . . . , Yn be independent exponentially distributed random vari-
ables with mean θ (or rate 1/θ).

(a) Find the probability distribution function for Ymin = min(Y1, Y2, . . . , Yn).
(Hint: Think of how we found the probability distribution for the max
from a Uniform distribution and apply the same idea here.)

P (Ymin ≤ y) = 1− P (Ymin ≥ y) = 1− P (Y1 ≥ y ∩ Y2 ≥ y . . . Yn ≥ y)
= 1− P (Y1 ≥ y)× P (Y2 ≥ y)× · · · × P (Yn ≥ y) since independent

= 1− e−
ny
θ

fYmin(y) =
n

θ
e−

ny
θ

Thus Ymin ∼ Exp(n/θ).
(b) Show that nYmin is an unbiased estimator of θ.

E[Ymin] = θ
n , therefore E[nYmin = nθ

n = θ which is unbiased.

(c) Find the variance of this estimator and calculate its efficiency relative
to the Cramér-Rao lower bound.

Var[nYmin] = n2Var[Ymin] = n2

(
θ

n

)2

= θ2
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f =
1
θ
e−

Y
θ

ln f = − ln θ − Y

θ
d ln f
dθ

= −1
θ

+
Y

θ2

d2 ln f
dθ2

=
1
θ2
− 2Y
θ3

E
[
d2 ln f
dθ2

]
=

1
θ2
− 2θ
θ3

=
1− 2
θ2

= − 1
θ2

CRLB =
θ2

n

Efficiency =
θ2

n
× 1
θ2

=
1
n

3. Let Y1, Y2, . . . , Yn be a random sample of size n from the uniform pdf
fY (y; θ) = 1/θ, 0 ≤ y ≤ θ.

(a) Find the maximum likelihood estimator of θ. From last homework
we know that θ̂ = Ymax, since L(θ) = (1/θ)n is decreasing in θ, and
the smallest value of θ that satisfies the constraint 0 ≤ y ≤ θ is
θ̂ = Ymax.

(b) Find an unbiased estimator of θ based on the maximum likelihood
estimator.

P (Ymax ≤ y) = P (EveryYi ≤ y) =
(y
θ

)n
fYmax =

nyn−1

θn

E[Ymax] =
∫ θ

0

nyn

θn
=

nθ

n+ 1

E
[
n+ 1
n

Ymax

]
= θ

Thus, n+1
n Ymax is an unbiased etimator of θ.

(c) Compare the variance of this estimator to the Cramér-Rao lower
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bound.

f = 1/θ
ln f = − ln θ

d ln f
dθ

= −1
θ(

d ln f
dθ

)2

=
1
θ2

CRLB =
θ2

n

E[Y 2
max] =

∫ θ

0

nyn+1

θn
=

nθ2

n+ 2

E

[(
n+ 1
n

Ymax

)2
]

=
(
n+ 1
n

)2

× nθ2

n+ 2
=

(n+ 1)2θ2

n(n+ 2)

Var
[
n+ 1
n

Ymax

]
=

(n+ 1)2θ2

n(n+ 2)
− θ2

=
θ2

n(n+ 2)
[n2 + 2n+ 1− (n2 + 2n)]

=
θ2

n(n+ 2)

This is smaller than the CRLB!. This occurs because Theorem 5.5.1
is not necessarily valid if the range of the pdf depends on the param-
eter as is the case with this problem.
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