- 1. (16 points: 4 each part)
- (a) $M_X(t) = E(\exp(tX))$ and $M_{kX}(t) = E(\exp(t(kX))) = E(\exp((kt)X)) = M_X(kt).$
- $M_{X+Y}(t) = \mathbb{E}(\exp(t(X+Y))) = \mathbb{E}(\exp(tX).\exp(tY)) = \mathbb{E}(\exp(tX)).\mathbb{E}(\exp(tY))$, using independence of X and Y.

(b) mgf of Y_i is (1/2)/((1/2) - t) from info sheet, so using (a)

mgf of $(1/2)(Y_1 + Y_2 + Y_3)$ is $((1/2)/((1/2) - (t/2)))^3 = (1/(1-t))^3$

mgf of W_i is $(1/(1-t))^{1.5}$ from info sheet, so usin (a), mgf of $W_1 + W_2$ is $(1/(1-t))^3$

Also, from the info sheet, this is mgf of G(3, 1).

So, by uniqueness of mgf, $(1/2)(Y_1 + Y_2 + Y_3)$ and $W_1 + W_2$ have same G(3, 1) distribution.

(c) Note $(X_1^2 + X_2^2) = 3(Z_1^2 + Z_2^2)$, where $Z_i \sim N(0, 1)$, and from table Z_i^2 has mgf $(\frac{1}{2}/(\frac{1}{2}-t))^{1/2}$ So mgf of $X_1^2 + X_2^2$ is $(\frac{1}{2}/(\frac{1}{2}-3t))^{2.(1/2)} = (1/6)/((1/6)-t)$.

But mgf of $3Y_1$ is also $(\frac{1}{2}/(\frac{1}{2}-3t)) = ((1/6)/((1/6)-t))$ which is mgf of $\mathcal{E}(1/6)$.

So, by uniqueness of mgf, $X_1^2 + X_2^2$ and $3Y_1$ have the same $\mathcal{E}(1/6)$ distribution.

(d) As in (c) mgf of $(X_1^2 + X_2^2 + X_3^2)$ is $(\frac{1}{2}/(\frac{1}{2} - 3t))^{3.(1/2)} = (1/6)/((1/6) - t)^{1.5}$.

And mgf of $6W_3$ is $(1/(1-6t))^{1.5} = ((1/6)/((1/6)-t))^{1.5}$ which is mgf of G(1.5, 1/6).

So, by uniqueness of mgf, $(X_1^2 + X_2^2 + X_3^2)$ and $6W_3$ have same G(1.5, 1/6) distribution.

2. (20 points: 4 each part)

Suppose that $x_1, ..., x_n$ are the outcomes of *n*-sample $X_1, ..., X_n$ which are i.i.d from the probability density function $f_X(x;\theta) = \theta x^{\theta-1}/2^{\theta}$ on $0 \le x \le 2$ (and $f_X(x;\theta) = 0$ otherwise), where $\theta > 0$.

(a) $E(X_i) = \int_0^2 \theta x^{\theta} / 2^{\theta} = \theta [x^{\theta+1} / (\theta+1)]_0^2 / 2^{\theta} = 2\theta / (\theta+1).$

(b) Method of moments equation is $\overline{x_n} = E(X_i) = 2\theta/(\theta+1)$, which gives $\theta = \overline{x_n}/(2-\overline{x_n})$. So the MoM estimator of θ is $\overline{X_n}/(2-\overline{X_n})$.

(c)

$$L_n(\theta) = \prod_{i=1}^n f_X(x_i; \theta) = \prod_{i=1}^n \theta x_i^{\theta - 1} / 2^{\theta} = \theta^n (\prod_{i=1}^n x_i)^{\theta - 1} / 2^{n\theta}.$$

so by the factorization criterion $T = \prod_{i=1}^{n} X_i$ is a sufficient statistic for θ . (d) Writing t for the value of $T = \prod_{i=1}^{n} X_i$, the log-likelihood is

$$\ell_n(\theta) = n \log \theta + (\theta - 1) \log t - n\theta \log 2$$

$$\ell'_n(\theta) = n/\theta + \log t - n \log 2 = 0$$

gives estimator $1/(\log(2) - (1/n)\log(T))$ or $1/(\log 2 - (1/n) \sum_{i=1}^{n} \log(X_i))$.

(e) The MLE should be preferred.

The main reason is that the MLE is a function of the sufficient statistic, while the MoM estimator is not. The Rao=Blackwell Theorem tells we can always do better using only functions of sufficient statistics.

(For large samples, MLE's reliably have other good properties – asymptotically unbiased, consistent, small mse, etc.)