Explain/justify ALL your answers.

1. (16 points: 4 each part)

(a) Let $M_X(t) = E(\exp(tX))$ denote the moment generating function (mgf) of random variable X. Show that the mgf of kX is $M_X(kt)$ for any constant k.

If X and Y are independent random variables, show that the mgf of X + Y is $M_X(t) M_Y(t)$.

In parts (b), (c) and (d) of this question:

 X_1, X_2 and, X_3 are Normal random variables with mean 0 and variance 3: $X_i \sim N(0,3)$,

 Y_1 , Y_2 and Y_3 are exponential random variables with rate parameter 1/2: $Y_i \sim \mathcal{E}(1/2)$,

 W_1, W_2 and W_3 are Gamma random variables with shape parameter 1.5 and rate parameter 1: $W_i \sim G(1.5, 1)$, and all these nine random variables $(X_i, Y_i, W_i, i = 1, 2, 3)$ are independent of each other.

- (b) Show that $(1/2)(Y_1 + Y_2 + Y_3)$ has the same distribution as $W_1 + W_2$ and identify this distribution.
- (c) Show that $(X_1^2 + X_2^2)$ has the same distribution as $3Y_1$ and identify this distribution.

(d) Show that $(X_1^2 + X_2^2 + X_3^2)$ has the same distribution as $6W_3$ and identify this distribution.

2. (20 points: 4 each part)

Suppose that $x_1, ..., x_n$ are the outcomes of *n*-sample $X_1, ..., X_n$ which are i.i.d from the probability density function $f_X(x;\theta) = \theta x^{\theta-1}/2^{\theta}$ on $0 \le x \le 2$ (and $f_X(x;\theta) = 0$ otherwise), where $\theta > 0$.

- (a) Show that $E(X_i) = 2\theta/(\theta + 1)$.
- (b) Show that the method of moments (MoM) estimator of θ is $\overline{X_n}/(2-\overline{X_n})$, where $\overline{X_n} = (1/n) \sum_{i=1}^n X_i$.
- (c) Show that the likelihood function for θ , based on the *n*-sample, is $L_n(\theta) = \theta^n (\prod_{i=1}^n x_i)^{\theta-1}/2^{n\theta}$ and identify a sufficient statistic for θ .
- (d) Show that the maximum likelihood estimator (MLE) for θ is $1/(\log 2 (1/n) \sum_{i=1}^{n} \log(X_i))$. (You need **not** verify that the 2 nd. derivative of the (log)-likelihood function is negative.)
- (e) Which estimator (MoM or MLE) would you prefer to use, and why?