1. X_1 , X_2 , and X_3 are a sample of three independent realizations from a distribution with mean θ and variance 1.

$$\begin{array}{rcl} (a) & T_1 &=& (X_1 + X_2 + X_3)/3 & T_2 &=& (4X_1 + 3X_2 + X_3)/9 \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & &$$

- (a) From (a) above, T_1 is unbiased, T_2 is not.
- (b) From (b) above, T_2 has smaller variance.
- (c) From (c) above, they have the same mse if $\theta = \pm 1$.

Otherwise, if $|\theta| < 1$, T_2 has smaller mse; if $|\theta| > 1$, T_1 has smaller mse;

3. (a) The Mom equation is to set (1/n). $\sum_{i=1}^{n} x_i = E(X_i) = \theta$ That is the MoM estimator of θ is $\overline{X_n} = (1/n) \sum_{i=1}^{n} X_i$, and the MoM estimator of $\theta^2 + \theta$ is $W = \overline{X_n}^2 + \overline{X_n}$. (b) $E(\overline{X_n}^2) = var(\overline{X_n}) + (E(\overline{X_n}))^2 = (1/n)var(X_i) + (E(X_i))^2 = \theta/n + \theta^2$ using the fact that the X_i are independent for the variance term. (c) $E(W) = E(\overline{X_n}^2) + E(\overline{X_n}) = \theta/n + \theta^2 + \theta$ So $b_W(\theta) = E(W) - (\theta^2 + \theta) = \theta/n \to 0$ as $n \to \infty$. So W is a biased estimator of $\theta^2 + \theta$, but asymptotically unbiased.